وضعیت ورود
درحال حاضر شما وارد سایت نشده اید.
آمار بازدیدکنندگان
  • کاربران حاضر: 1
  • بازدید امروز: 2,616
  • بازدید ماه: 88,946
  • بازدید سال: 904,135
  • کل بازدیدکنند‌گان: 234,172
قیمت روز

اخبار

آنزیم‌ها خواص چندگانه به پلاستیک‌ها می‌بخشند!

آنزیم‌ها که واکنش‌های شیمیایی را در بدن تسریع می‌کنند می‌توانند کارایی را به پلاستیک‌ها اضافه کنند در صورتی که بتوان آن‌ها را از دمای فرآیندی بالا محافظت کرد.

آنزیم‌ها کاتالیست‌های بیولوژیکی هستند. آن‌ها واکنش‌های شیمیایی را در بدن راه می‌اندازند مانند واکنش دخیل در هضم که در غیر این صورت فرآیند هضم بسیار طولانی‌تر یا به دمای بالاتری نیاز دارد. آنزیم‌ها می‌توانند عمل‌کرد را به پلاستیک‌ها بیافزایند مانند خودتمیزشوندگی، توانایی مقاومت در برابر قالب یا باکتری‌ها و قابلیت خود تخریبی (زیست‌تخریب‌پذیری). با این حال آنزیم‌ها زیاد به حرارت حساس نیستند و پلاستیک‌ها معمولاً در دمای بالا فرآیند می‌شوند. این امر ترکیب آنزیم‌ها با پلاستیک‌ها را سخت می‌کند. در حال حاضر دانشمندان در مؤسسه Fraunhofer برای تحقیقات کاربردی پلیمر (IAP) در آلمان راهی برای انجام این کار بدون از بین بردن عمل‌کرد آنزیم‌ها پیدا کردند. هدف آن‌ها تبدیل به فرآیند صنعتی است. Ruben Rosencrantz، رئیس بخش مواد عامل‌دار و بخش گلیکوبیوتکنولوژی Fraunhofer IAP در این زمینه گفت: ما به دنبال تولید پلاستیک‌های زیستی عامل‌دار شده در مقیاس آزمایشگاهی نیستیم. ما می‌خواهیم نشان دهیم که تولید فنی آن امکان‌پذیر است. سازمان تقریباً در نیمه راه پروژه تحقیقاتی است که در سال ۲۰۱۸ آغاز شد. محققان از حامل‌های معدنی بسیار متخلخل جهت تثبیت و محافظت از آنزیم‌ها استفاده می‌کنند. آنزیم‌ها با جاسازی خود در منافذ به حامل‌ها متصل می‌شوند. Rosencrantz افزود: اگرچه حامل‌ها تحرک آنزیم‌ها را محدود می‌کند اما آن‌ها فعال می‌مانند و قادر به تحمل دمای بالاتر هستند. با این حال یک فرآیند واحد وجود ندارد که در همه موارد کار کند. همچنین می‌گوید: حامل باید به طور خاص برای هر آنزیم انتخاب شود زیرا دو آنزیم شبیه هم نیستند. استفاده از آنزیم پایدار شده در توده پلاستیک، نه فقط در سطح، دشوارتر است. ماندگاری طولانی‌تری دارد و از اثرات سایش سطح جلوگیری می‌کند. برای دست‌یابی به بهترین نتیجه در فرآیند پایین دست، آنزیم تثبیت شده باید به سرعت مذاب پلاستیک داغ توزیع شود؛ بنابراین در معرض نیرو یا دمای زیاد قرار نگیرد. محققان فرآیندی را توسعه دادند که هم برای پلاستیک‌های زیستی و هم برای پلاستیک‌های معمولی پایه نفتی مانند پلی‌اتیلن اعمال می‌شود. Thomas Büsse رئیس واحد آزمایشگاه صنعتی پلیمرهای زیستی Fraunhofer IAP در Schwarzheide گفت: به هنگام جاسازی در پلاستیک، آنزیم‌های تثبیت شده می‌توانند بارهای حرارتی بالاتری را نسبت به قبل تحمل کنند. این کار استفاده از آنزیم‌ها و تمام مراحل فرآیند را بسیار آسان‌تر می‌کند. تاکنون تمرکز محققان بر روی آنزیم‌هایی بوده است و پروتئاز نامیده می‌شود که پروتئین‌ها را تجزیه می‌کند. پلاستیک‌های جاسازی شده با پروتئازها می‌توانند اثر خودتمیزشوندگی داشته باشند مانند لوله‌هایی که در برابر انسداد (گرفتگی) مقاومت می‌کنند. با این حال این تیم در حال آزمایش آنزیم‌های دیگر نیز هستند. شرکای پروژه در BTU Cottbus-Senftenberg بر آنزیم‌هایی که پلاستیک‌ها و مواد سمی را تجزیه کرده تمرکز می‌کنند. اولین گرانول‌ها و فیلم‌های عامل‌دار شده قبلاً تولید شده است. محققان نیز آنزیم‌های تعبیه شده در این محصولات را ایجاد کردند که فعال باقی می‌مانند. آن‌ها ثبت اختراعی را برای این تحقیق ارائه کردند.

Untitled

آنزیم‌های تعبیه شده در PCL به منظور تسهیل فرآیند تخریب

تحقیق سبز

ضمناً تحقیق در مورد پلاستیک‌های سبز پر رونق است. همچنین مواد زیستی نظیر پلی‌اتیلن سبز Braskem که از نیشکر به جای نفت خام ساخته شده است. علاقه مداوم به پلاستیک‌های زیست‌تخریب‌پذیر و قابل کمپوست وجود دارد. این مواد معمولاً اما نه همیشه از منابع پایدار ساخته شده اند. با این حال پلاستیک‌های زیست‌تخریب‌پذیر و قابل کمپوست عموماً تنها در شرایط خاص مانند کمپوست‌سازی صنعتی تجزیه می‌شوند. این بدان معنی است که اگر این مواد به محیط زیست یا سایت‌های دفن زباله راه یابند تجزیه نخواهند شد. این یکی از دلایل ادامه تحقیقات است که چگونه پلاستیک‌ها را می‌توان مهندسی کرد تا مؤثرتر تجزیه شوند. یکی از روی‌‌کردهای نوظهور استفاده از پلاستیک‌هایی است که مولکول‌های پلاستیک را هضم می‌کنند.

 

روی‌کرد تعبیه شده

محققان دانشگاه کالیفرنیا در برکلی راهی را برای جاسازی آنزیم‌ها در پلاستیک ابداع کرده‌اند تا سریع‌تر تجزیه شوند. دانشمندان به رهبری Ting Xu از بخش علم و مهندسی مواد فرآیند را به پلی‌لاکتیک‌اسید (PLA) اعمال کردند. معمولاً به منظور افزایش سرعت تخریب از پلاستیک زیست‌تخریب‌پذیر استفاده می‌شود. XU می‌گوید بسیاری از موارد ساخته شده به سایت‌های دفن زباله ختم می‌شوند جایی که تخریب زیستی نمی‌شوند. این فرآیند شامل تعبیه آنزیم پلی‌استری به درون توده‌‌ پلیمری است که تولید می‌شود. یک لایه پلیمری محافظ تضمین می‌کند که آنزیم تا زمانی که به آن نیاز نباشد غیر فعال می‌ماند. حرارت و آب پوسته محافظ را از بین می‌برد سپس به آنزیم اجازه می‌دهد تا قسمت عمده توده پلیمر را تجزیه کند. به عنوان مثال پلی‌لاکتیک‌اسید به اسید لاکتیک تجزیه می‌شود که می‌تواند میکروب‌های خاک را در کمپوست تغذیه کند. پوسته‌ محافظی که همراه با توده پلاستیک تخریب می‌شود مولکولی به نام هتروپلیمر تصادفی (RHP) است. از چهار نوع زیر واحد منومری ساخته شده است که خواص شیمیایی هر کدام برای برهم‌کنش با گروه‌های شیمیایی سطح آنزیم خاص طراحی شده است. تحت اشعه ماوراء بنفش (UV) و در غلظت موجود کم‌تر از ۱% وزن پلاستیک تخریب می‌شوند (برای این که مشکلی نباشد مقدار کم کافی است). در تحقیقی که در Nature منتشر شد این تیم میلیاردها نانوذره را در گرانول‌های پلاستیک جاسازی کرد. مقاله نشان داد که آنزیم‌های محافظت شده با RHP ماهیت پلاستیک‌ها را تغییر ندادند که هنوز می‌توان در دمای حدود ۱۷۰ درجه به الیاف تبدیل شوند. XU گفت: اگر آنزیم را تنها روی سطح دارید خورندگی بسیار آهسته است. شما توزیع در مقیاس نانو را در سرتاسر می‌خواهید؛ به طوری که هر مولکول همسایگان پلیمری خود را می‌خورد و کل مواد متلاشی می‌شود.

 

آب و گرما

تخریب با افزودن آب و گرما آغاز می‌شود. در دمای اتاق در عرض یک هفته ۸۰% از الیاف PLA اصلاح شده به طور کامل تجزیه می‌شوند. این فرآیند در دمای بالاتر سریع‌تر بود: تحت شرایط کمپوست صنعتی PLA اصلاح شده طی ۶ روز در دمای ۵۰ درجه تخریب شد. پلی استر دیگر، پلی‌کاپرولاکتون (PCL) تحت شرایط کمپوست صنعتی طی دو روز و در دمای ۴۰ درجه تخریب شد. برای پلی‌لاکتیک‌اسید، XU آنزیمی با نام پروتئیناز k را جاسازی کرد که PLA را به اسید لاکتیک تجزیه می‌کند. برای PCL از لیپاز استفاده کرد. هر دو آنزیم ارزان و معمولاً در دسترس هستند. Xu متعقد است که دمای بالاتر سبب تحرک بیش‌تر آنزیم محافظت شده می‌شود. به آن اجازه می‌دهد انتهای زنجیره پلیمری را به سرعت پیدا کند و آن را تخریب کند سپس سراغ زنجیره بعدی برود. آنزیم‌های پوشش داده شده با RHP تمایل به اتصال به انتهای زنجیره پلیمری را دارند، نگه داشتن آنزیم‌ها در نزدیکی اهدافشان. به گفته‌ XU پلیمرهای اصلاح شده در دماهای پایین‌تر یا مدت رطوبت کم تجزیه نمی‌شوند. یک پیراهن پلی‌استر در مقابل عرق و شتسشو در دمای متوسط مقاومت می‌کند. غوطه‌وری در آب دمای اتاق به مدت سه ماه باعث تخریب پلاستیک نمی‌شود. با این حال خیساندن در آب ولرم مانند آب شیر داغ منجر به تخریب شد. XU در حال توسعه آنزیم‌های پوشش داده شده با RHP است که می‌تواند انواع دیگر پلی‌استر‌ها را تخریب کند. اما او همچنین RHP ها را اصلاح می‌کند تا بتواند تخریب را برنامه ریزی کند تا در یک نقطه مشخص متوقف شود و مواد را به طور کامل از بین نبرد. او گفت: در صورتی که پلاستیک نیاز به ذوب مجدد و بازیافت داشته باشد می‌تواند مفید باشد. علاوه بر این یکی از نویسندگان همکار این مطالعه Aaron Hall دانشجوی دکترا دانشگاه برکلی یک شرکت برای توسعه بیش‌تر این مواد ایجاد کرده است. این ثابت می‌کند که آنزیم‌ها برای زیست‌شناسی حیاتی هستند. آن‌ها در توسعه پلاستیک‌های جدید اهمیت فزاینده‌ای پیدا می‌کنند.

Untitledl

منبع خبر:

www.iap.fraunhofer.de/en
www.berkeley.edu

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

فناوری به حداقل رساندن بو برای پلاستیک‌های بازیافتی با کیفیت بالا

سیستم مدولار (چند بخشی) جدید IR-Fresh Kreyenborg به طور ایمن و کارآمد بوهای مزاحم در پلاستیک‌ها را از بین می‌برد!

فناوری جدید به حداقل رساندن بو برای پلاستیک‌های بازیافتی با کیفیت بالا توسط Kreyenborg آلمان ایجاد شده است. این شرکت با استفاده از فناوری مادون قرمز، تخصص سطح بالا پایدار در بازیافت پلاستیک، با راه‌حل‌هایی برای پاک‌سازی رزین پسامصرف PCR-PET (Post-Consumer Resin)، بلورینگی، خشک کردن و گرم کردن مواد بالک ایجاد کرد. به گفته این شرکت، علاوه بر این فناوری، سیستم مدولار جدید IR-Fresh برای کاهش ایمن و کارآمد بوهای مزاحم در پلاستیک است. در اینجا نحوه کار آن آمده است:

 ▪ در مرحله اول فرآیند، یک مدول مادون قرمز که در بالای بستر مواد نصب می‌شود، مواد را به سرعت و مستقیماً تا سطح دمای مطلوب برای پلاستیک مورد نظر گرم می‌کند. در این فرآیند، چرخش مداوم درام جریان جرمی همگن با زمان ماندگاری مشخص را ایجاد می‌کند (با استفاده از اصل اول ورود/اولین خروج). به دلیل چرخش و اختلاط عناصر که در مارپیچ ها گنجانده می‌شوند، مواد به طور مداوم در درام با تبادل سطحی ثابت مخلوط می‌شوند. گفته می‌شود که همراه با گرمایش کنترل‌شده، حذف بوی قابل توجه‌ای را حتی در مدت زمان اقامت بسیار کوتاهی فراهم می‌کند.

 ▪ در مرحله دوم فرآیند، مواد معطر باقی‌مانده در ریگرند یا گرانول‌ها با یک فرآیند تمیزکاری حرارتی-فیزیکی در Conditioner IR-Fresh حذف می‌شوند – یک قیف عایق‌بندی شده که مواد را در محدوده دمایی ایده‌آل برای فرآیند پاک‌سازی با استفاده از دستگاه داغ نگه می‌دارد تا از آلودگی مبرا باشد. طبق گزارش‌ها نتایج عالی برای بوزدایی و آلودگی‌زدایی می‌تواند از طریق تعامل پارامترهای اصلی فرآیند جریان هوا، دما و زمان اقامت حاصل شود.

به دلیل طراحی مدولار، فرآیند IR-Fresh می‌تواند به طور مداوم در دو مرحله هم برای ساییدن مجدد – قبل از فرآیند اکستروژن – و هم برای گرانول‌ها – بعد از فرآیند اکستروژن – استفاده شود. این به منظور یا ترکیب تهویه‌کننده IR-Fresh به عنوان یک مرحله جداگانه در زنجیره فرآیند یا آن به عنوان یک راه حل مستقل و خودکفا یا پیوسته یا ناپیوسته که عمل کند، امکان‌پذیر است. سیستم IR-Fresh به عنوان یک راه‌کار به‌سازی برای انسجام در کارخانه‌های موجود نیز مناسب است.

لینک خبر:

https://www.ptonline.com/products/odor-minimization-technology-for-high-quality-recycled-plastics

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

گرید‌های TPE بازیافتی پساصنعتی تأیید شده برای فضای داخلی خودرو

شرکت Kraiburg تولیدکننده ترموپلاستیک‌الاستومر (TPE) به سازندگان تجهیزات اصلی (OEM) (Original Equipment Manufacturer) کمک می‌کند تا نرخ بازیافت را برآورده کنند و از کاهش میزان انتشار کربن (carbon footprint (PCF)) برای محصولات داخل خودرو پشتیبانی می‌کند.

با محتوای بازیافت تا ۳۸%، گریدهای ترموپلاستیک‌الاستومر بازیافتی پساصنعتی یک جای‌گزین قابل اعتماد و پایدار را برای مواد خام به بازار خودرو ارائه می‌دهند. این تأمین کننده در حال گسترش مجموعه خود برای OEMها و تأمین کننده قطعات آن‌ها است. در حالی که به میزان قابل توجهی در رسیدن به نرخ بازیافت کمک می‌کند و  در راستای کاهش میزان انتشار کربن برای محصولات داخل خودرو پشتیبانی می‌کند.

مواد خام RIP (post-industrial recycled (PIR)) از زباله‌های تولید شده توسط دیگر شرکت‌های تولید محصولات پلاستیکی به دست می‌آید. بخش TPE Kraiburg از آن برای پیشبرد کاربردهای پایدار داخلی خودرو استفاده می‌کند. کاربردهای احتمالی شامل مت‌های (نمد) ضد لغزش، مت‌های (نمد) کف، اجزای نرم در قسمت جالیوانی و همچنین عناصر تثبیت‌کننده است. این سری برای کاربردهایی مناسب است که به محدوده سختی Shore A بین ۶۰ تا ۹۰ (بسته به محتوای بازیافتی) نیاز دارند.

الزامات سخت OEM برای انتشار و بو برآورده شده است و این ماده را می‌توان با پلی‌پروپیلن در قالب‌گیری تزریقی ترکیب کرد یا به عنوان یک راه حل تک جز نرم استفاده کرد. علاوه بر این، PIR TPE مقاومت سایشی و جریان‌پذیری همراه با دانسیته کم را فراهم می‌کند تا وزن قطعه را حداقل نگه دارد. ما در حال گسترش دامنه محصولات خود هستیم تا PIR TPE داخلی را در پاسخ به مسائل پایداری که توسط OEMها مطرح می‌شود را شامل شود. Matthias Michl رئیس توسعه برنامه‌های کاربردی خودرو در Kraiburg TPE گفت: ما مطمئن هستیم که مشتریانمان از گزینه استفاده از TPE براساس مواد خام بازیافتی برای فضای داخلی خودرو بهره مند خواهند شد. مشتریان همچنین می‌توانند اطلاعات لازم محصول خود را در مورد میزان انتشار کربن (PCF) دریافت کنند. PCF کیفیت میزان انتشار Co2 را بیان می‌کند. در این مورد از لحظه تولید تا ورود به فروشگاه ( cradle to gate). پتانسیل گرمای جهانی ((GWP) global warming potential) یک محصول محاسبه می‌شود و نشان می‌دهد که محصول چقدر به گرمایش جهانی از استخراج مواد خام تا ساخت محصول کمک می‌کند. تولیدکنندگان برای ارزیابی ردپای کربن اجزا و در نهایت کل خودرو به این مقدار نیاز دارند. Kraiburg TPE مدعی شفافیت کامل در ارزیابی PCF است و مقادیر را بر اساس DIN EN ISO 14067 و DIN EN ISO 14044 پیرو پروتکل GHG محاسبه می‌کند. اطلاعات دقیق در مورد ارزیابی ارائه شده است. این محصول برای مشتریان در منطقه فروش EMEA در دسترس است. Kraiburg TPE در حال حاضر بر روی راه حل‌های موضعی برای بازارهای APAC و آمریکای شمالی کار می‌کند. Michl این افزایش پورتفولیو را با اشاره به این نکته خلاصه می‌کند که راه حل‌های جدید، همگانی و داخلی PIR TPE و همچنین ارائه مقادیر منحصر به فرد PCF به مشتریان ما را قادر می‌سازد تا خود را به عنوان یک مخاطب قابل اعتماد و موضعی TPE قرار دهیم و خدمات کاملی را برای محصولات خود ارائه دهیم.

 

منبع:

https://www.kraiburg-tpe.com

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

بهبود کارایی جذب دی‌اکسید کربن توسط فناوری جدید غشای پلیمری

محققین فناوری غشایی جدیدی را ایجاد کرده‌اند که امکان حذف مؤثرتر دی‌اکسید کربن (CO2) از گازهای مخلوط نظیر انتشار گاز از نیروگاه‌ها را فراهم می‌کند. Rich Spontak، نویسنده همکار مقاله می‌گوید: برای نشان دادن توانایی غشای جدیدمان، مخلوط گازهای CO2 و نیتروژن را بررسی کردیم؛ زیرا مخلوط این دو گاز خصوصاً در زمینه کاهش انتشار گازهای گل‌خانه‌ای از نیروگاه‌ها مرتبط است. همچنین نشان دادیم که می‌توانیم گزینش‌پذیری غشاها را جهت حذف CO2 به شدت بهبود بخشیم. در حالی که نفوذپذیری CO2 را نسبتاً بالا حفظ کنیم. Spontak استاد برجسته مهندسی شیمی و زیست‌مولکولی و استاد علوم و مهندسی مواد در دانشگاه کارولینای شمالی می‌گوید: ما همچنین مخلوط CO2 و متان را که برای صنعت گاز طبیعی مهم است، بررسی کردیم. علاوه بر این، غشاهای فیلترکننده CO2 را می‌توان در هر شرایطی که نیاز به حذف CO2 از گازهای مخلوط شده باشد استفاده کرد، چه کاربردهای زیست‌پزشکی و یا پاک‌سازی (جذب) CO2 از هوا در یک زیردریایی. غشاها یک فناوری جذاب برای حذف CO2 از گازهای مخلوط هستند؛ زیرا فضای زیادی را اشغال نمی‌کنند. می‌توانند در اندازه‌های مختلف ساخته شوند و به آسانی قابل تعویض هستند. فناوری دیگری که اغلب برای حذف CO2 استفاده می‌شود جذب شیمیایی است که شامل حباب‌زایی (Bubbling) مخلوط‌های گازی از طریق ستون حاوی آمین مایع است که CO2 را از گاز حذف می‌کند. با این حال فناوری‌های جذب دارای ردپای قابل توجه بزرگ‌تری هستند و آمین‌های مایع معمولاً سمی و خورنده هستند. این فیلترهای غشایی با اجازه دادن به CO2 سریع‌تر از سایر اجزای مخلوط عبور کرده و کار می‌کنند. در نتیجه گازی که از طرف دیگر غشا خارج می‌شود نسبت به گاز ورودی به غشا دارای CO2 بیش‌تری است. با گرفتن گازی که از غشا خارج می‌شود CO2 بیش‌تری نسبت به سایر گازهای تشکیل‌دهنده جذب می‌کنید. یک چالش دیرین برای چنین غشاهایی مبادله بین نفوذپذیری و گزینش‌پذیری بوده است. هرچه نفوذپذیری بیش‌تر باشد می‌توانید گاز را با سرعت بیش‌تر از غشا عبور دهید. اما وقتی نفوذپذیری بالا می‌رود گزینش‌پذیری کاهش می‌یابد به این معنی که نیتروژن و سایر اجزا به سرعت از غشا عبور می‌کنند و نسبت CO2 به سایر گازهای مخلوط را کاهش می‌دهد. به عبارت دیگر زمانی که گزینش‌پذیری کاهش می‌یابد، CO2 نسبتاً کم‌تری را جذب می‌کنید. تیم تحقیقاتی از ایالات متحده و نروژ این مشکل را با رشد زنجیره‌های پلیمری فعال شیمیایی دارای گروه‌های آب‌دوست و دی‌اکسید کربن دوست بر روی سطح غشاهای موجود برطرف کردند. این کار گزینش‌پذیری را افزایش می‌دهد. Marius Sandru نویسنده مقاله و پژوهش‌گر ارشد صنعت SINTEF در سازمان تحقیقات مستقل نروژ می‌گوید: به طور خلاصه با تغییر کمی در نفوذپذیری نشان دادیم که می‌توانیم گزینش‌پذیری را تا حدود ۱۵۰ برابر افزایش دهیم. بنابراین ما CO2 بیش‌تر نسبت به انواع دیگر در مخلوط‌های گازی جذب می‌کنیم. یکی دیگر از چالش‌های پیش رو فیلتر‌های غشایی CO2، هزینه است. فناوری‌های غشای قبلی هرچه مؤثرتر بودند، گران‌تر بودند. Spontak می‌گوید: از آنجایی که ما می‌خواستیم فناوری ایجاد کنیم که از نظر تجاری قابل دوام باشد، فناوری ما با غشاهایی شروع شد که در حال حاضر در حال استفاده گسترده هستند. ما سپس سطح این غشاها را مهندسی کردیم تا گزینش‌پذیری را بهبود بخشیم. در حالی که این امر هزینه را افزایش می‌دهد ما فکر می‌کنیم که غشاهای اصلاح شده همچنان مقرون به صرفه خواهند بود. Sandru  بیان کرد: قدم‌های بعدی ما این است که مشاهده کنیم تکنیک‌هایی که در اینجا توسعه دادیم تا چه حد می‌تواند برای سایر پلیمرها به کار رود، تا نتایجی قابل مقایسه یا حتی برتر برای ارتقای فرآیند ساخت نانو داشته باشیم. صادقانه بگویم اگرچه نتایج در اینجا چیزی کم از هیجان‌انگیز نبوده است ما هنوز برای بهینه‌سازی این فرآیند تلاشی نکرده‌ایم. مقاله ما نتایج مفهومی را اثبات می‌کند. محققان همچنین علاقه‌مند به بررسی کاربردهای دیگر هستند؛ از جمله این که آیا فناوری جدید غشایی می‌تواند در دستگاه‌های ونتیلاتور زیست‌پزشکی یا دستگاه‌های فیلتراسیون در بخش آبزی پروی استفاده شود. محققین می‌گویند که آماده همکاری با شرکای صنعتی برای بررسی هر یک از این سؤالات یا فرصت‌ها برای کمک به کاهش تغییرات آب و هوایی جهانی و بهبود عمل‌کرد دستگاه هستند.

منبع:

https://www.climatechange.ie

 

An integrated materials approach to ultrapermeable

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

افزایش ظرفیت فیلم محافظ رنگ کمپانی Paint Protection Film – Covestro

خط جدید در تایوان تا سال ۲۰۲۳ با ظرفیت اختصاصی برای تأمین تقاضای اضافی فیلم محافظ رنگ از بخش خودرو آماده خواهد شد.

شرکت Covestro قصد دارد ظرفیت فیلم محافظ رنگ (PPF) پلی‌یورتان‌ترموپلاستیک (TPU) را در سایت PPF خود در Changhua تایوان به طور قابل توجهی گسترش دهد. با سرمایه‌گذاری چندین میلیون دلاری، توسعه تا سال ۲۰۲۳ با ظرفیت اختصاصی برای PPF و امکانات تحقیق و توسعه آماده خواهد شد تا پاسخ‌گو به تقاضای فزاینده بالا در بخش خودرو باشد. سایت Changhua همچنین به تازگی گواهی‌نامه ISCC plus را دریافت کرده که اجازه تولید انبوه TPU را می‌دهد.

اکثر برندهای تولیدکننده خودرو، PPF را به عنوان یک گزینه در خودروهای جدید ارائه می‌کنند. بسیاری از راه حل‌های محافظت از سطح نیز در بازار پس از فروش موجود است. از فیلم‌های TPU و پلی‌وینیل‌کلراید (PVC) گرفته تا پوشش‌های سرامیکی.

شرکت Covestro یکی از بزرگ‌ترین تأمین‌کنندگان بین‌المللی PPF از TPU است. استفاده از PPF در پوشش‌های خودرو، آخرین روند پایدار برای جای‌گزینی راه حل سنتی PVC است که برای دهه‌ها مورد استفاده قرار گرفته است. PPF پایدارتر بوده زیرا قابل بازیافت است. علاوه بر این PPF از نظر خواص فیزیکی و مقاومت شیمیایی عمل‌کرد بهتر، مقاومت بالاتر در برابر آب و هوا، شفافیت بیش‌تر و استحکام فیزیکی را ارائه می‌دهد. علاوه بر این، راه حل PPF می‌تواند بیش‌ترین تأثیرات ناشی از سنگ‌های کوچک، گرد و غبار و مواد شیمیایی مانند باران اسیدی را تحمل کنند.

مطابق اظهارات شرکت Covestro گریدهای PPF Desmopan 88395AU به وسیله یک PPF چند لایه ساخته شده از TPU با کارایی بالا حفاظت از سطح پایدارتر و با کارایی بالا برای قطعات خودرو فراهم می‌کند. از این رو رنگ خودرو را تقویت می‌کند و نیاز به استفاده مجدد از آن را کاهش می‌دهد. این راه حل همچنین دوام طولانی مدت بهتری را ارائه می‌دهد که در مقایسه با چرخه‌ یک تا دو ساله پوشش‌های PVC رایج ۵ تا ۱۰ سال دوام می‌آورد.

منبع:

Covestro.com

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

تبدیل زباله‌ به ثروت: روش بدیع و متفاوتِ شیمیدانان تا این مهم را آسان‌تر و سودآورتر برای پلاستیک بازیافتی کند!

شیمیدانان دانشگاه کارولینای شمالی در  Chapel Hill با اصلاح پیوندهای کربن-هیدروژن، زباله‌های پلاستیکی را به مواد محکم‌تر و قوی‌تر تبدیل می‌کنند.

طبق یک مطالعه در سال ۲۰۲۰، ایالات متحده بیش از هر کشور دیگری زباله پلاستیکی تولید می‌کند – حدود ۴۶/۳ میلیون تن از آن – یا ۲۸۷ پوند برای هر نفر در سال.

نرخ بازیافت ۹% ایِ کشور هرگز ادامه نخواهد داشت. چرا این‌قدر پایین؟ شیمی پلاستیک‌های امروزی بازیافت را بسیار مشکل می‌کند. حتی ترموپلاستیک‌هایی که می‌توانند ذوب شوند با هر بار استفاده مجدد ضعیف می‌شوند به علاوه آن منجر به مانع واقعی برای بازیافت – اقتصاد – می‌شود. تقریباً انگیزه سود وجود ندارد.

اما اکنون گروهی از شیمیدانان در دانشگاه کارولینای شمالی در Chapel Hill، با کشف روشی برای تجزیه پلاستیک‌ها به منظور ایجاد ماده‌ای جدید که محکم‌تر و قوی‌تر از ماده اصلی است، جداول را تغییر داده‌اند. به ایم معنی که بالقوه ارزشمندتر است.

Frank Leibfarth، استادیار شیمی در کالج هنر و علوم UNC، گفت: روی‌کرد ما زباله‌های پلاستیکی را به عنوان یک منبع بالقوه ارزشمند برای تولید مولکول‌ها و مواد جدید در نظر می‌گیرد. ما امیدواریم این روش بتواند انگیزه‌ای اقتصادی برای بازیافت پلاستیک ایجاد کند، در حالی که به معنای واقعی کلمه زباله‌ها را به ثروت تبدیل می‌کند.

Untitleda

شیمیدانان کارولینا روشی برای اصلاح پلیمر رایج مورد استفاده در کیسه‌های مواد غذایی، آب و بطری‌های سودا و بسته‌بندی ایجاد کردند تا آن را آسان‌تر و سودآورتر برای پلاستیک بازیافتی کند.

Leibfarth و استاد Erik Alexanian ،UNC-Chapel Hill، که متخصص در سنتز مواد شیمیایی است، این روی‌کرد را که می‌تواند حلقه در مسیر بازیافت پلاستیک را مسدود کند، در مجله Science شرح می‌دهند.

پیوندهای کربن-هیدروژن تعدادی از قوی‌ترین پیوندهای شیمیایی در طبیعت هستند. پایداری‌ آن‌ها، آن را برای تبدیل محصولات طبیعی به داروها و چالش‌برانگیز برای پلاستیک‌های کالایی بازیافتی دشوار می‌کند.

اما با اصلاح پیوندهای کربن-هیدروژن رایج در پلیمرها، این بلوک‌های ساختاری برای پلاستیک مدرن مورد استفاده در کیسه‌های مواد غذایی، بطری‌های نوشابه و آب، بسته‌بندی مواد غذایی، قطعات خودرو و اسباب‌بازی‌ها، می‌توان طول عمر پلیمرها می‌تواند بیش‌تر از پلاستیک یک‌بار مصرف افزایش یابد.

با یک معرف شناسایی شده جدید که می‌تواند اتم‌های هیدروژن را از ترکیبات دارویی و پلیمرها جدا کند، شیمیدانان UNC برای ساخت پیوندهای جدید در مکان‌هایی که قبلاً غیر فعال در نظر گرفته ‌شدند، قادر بودند.

Alexanian گفت: “تطبیق‌پذیری روی‌کرد ما این است که تغییر شکل‌های ارزشمند بسیاری از پیوندهای کربن-هیدروژن را در چنین طیف گسترده‌ای از ترکیبات مهم امکان پذیر می‌کند.”

تبدیل زباله به ثروت

گروه Leibfarth در کارولینا بر روی طراحی پلیمرهایی متمرکز شده است که هوشمندتر، کاربردی‌تر و پایدارتر هستند.

با حمایت NC Policy Collaboratory، این تیم، پلیمر فوق جاذب قادر به جذب مواد شیمیایی خطرناک از آب آشامیدنی را ایجاد کردند.

محققان در نظر داشتند از این روی‌کرد نوآورانه برای کمک به تبدیل دشوار به زباله‌های پلاستیکی بازیافتی به دسته‌ای از پلیمرهای با ارزش استفاده کنند.

آن‌ها با بسته‌بندی فوم پلاستیکی که برای محافظت از وسایل الکترونیکی در حین حمل و نقل استفاده می‌شود شروع کردند که در غیر این صورت به محل‌های دفن زباله ختم می‌شود. نمونه‌هایی از فوم پس از مصرف توسط High Cube LLC، یک شرکت بازیافت Durham N.C. فراهم شد. این فوم از پلاستیک با چگالی کم به نام پلی‌الفین تجاری ساخته می‌شود.

با بیرون آوردن انتخابی اتم‌های هیدروژن از پلی‌الفین، شیمیدانان راهی برای افزایش عمر پلاستیک یک‌بار مصرف به یک پلاستیک با ارزش بالا معروف به آینومر ابداع کردند. آینومرهای پرطرف‌دار Dow’s SURLYNTM هستند، ماده‌ای مناسب که در طیف وسیعی از بسته‌بندی‌های مواد غذایی استفاده می‌شود.

پلاستیک‌های بازیافتی بسیاری به محصولات با کیفیت پایین‌تر مانند فرش یا لباس‌های پلی‌استر تبدیل می‌شوند که ممکن است باز هم به محل‌های دفن زباله ختم شوند. اگر لاک‌پشت‌ها پلاستیک اقیانوس را به‌ جای غذا اشتباه بگیرند، پلاستیک‌های دور ریخته شده در آبراه‌ها، حیات دریا را به خطر می‌اندازد.

Leibfarth گفت: اما اگر شیمی بتواند به صورت مداوم برای پلیمرها به منظور کمک به بازیافت آن‌ها به کار رود “می‌تواند این نگرش که به پلاستیک نگاه می‌کنیم را تغییر دهد.”

لینک خبر:

Turning Trash Into Treasure: Chemists’ Radical Way To Make It Easier, More Profitable To Recycle Plastic

۱۰۰۰۰۵۶_science.abh4308

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

آسفالت بازیافتی، پلاستیک آزمایش شده در پارکینگ شرکت Target

در نتیجه یک همکاری با شرکت آسفالت Kansas و خرده‌فروشی بزرگ Granite Construction ،Target یک مخلوط کف‌پوش آسفالت بازیافتی که موادی معادل با ۱/۸ میلیون کیسه پلاستیکی را شامل می‌شود، ایجاد کرده است. نمونه اولیه پارکینگ در Apple Valley، کالیفرنیا واقع شده است و تا حدود ۵۳۰ تن RAP استفاده می‌کند.

بنا به گفته Chuck Jeffries، رئیس آسفالت Target ،Kansas با ایده‌ای برای نوآوری پارکینگ‌های خود به آسفالت Kansas آمد و شرکت به Granite Construction روی آورد. ما ۳۵ سال است که با Granite تجارت می‌کرده‌ایم و از مواد آن‌ها در پروژه‌های‌مان در سراسر کشور استفاده می‌کنیم. ما بلافاصله فهمیدیم که می‌توانیم با Granite برای ساختن این ترکیب شریک شویم.

نوع پلاستیک شماره ۴ (پلی‌اتیلن‌سبک low-density polyethylene) و شماره ۶ (پلی‌استایرن یا استایروفوم polystyrene or styrofoam) توسط Target برای مخلوط جمع‌آوری شد. اکتبر گذشته، آسفالت  Kansas مقدار ۲۸۰۰ تن آسفالت را با ترکیب طراحی ارائه شده توسط Granite Construction نصب کرد. این مخلوط با روسازی آسفالت اصلاح شده و نیز ۲۲۰۰ کیسه پلاستیکی بازیافتی فروشگاه و ۱۲۰۰ بطری پلاستیکی ساخته شد.  Granite این پلاستیک‌ها را از طریق یک روش فرآیند مرطوب در یک کارخانه اختلاط ترکیب کرد.

طبق گفته آسفالت Kansas، پلاستیک به عنوان بخشی از عامل پیوندی در آسفالت مایع با محصولات پس از مصرف در کل ۱۰% مربوط به چسب استفاده شد.

اثر کلی این پروژه بازیافت از ۹۰۰ متر مکعب زباله ناشی از ورود به محل دفن زباله جلوگیری کرد.

انتظار می‌رفت طول عمر معادل آسفالت مرسوم باشد. داده‌هایی که تیم Granite تاکنون گردآوری کرده است نشان می‌دهد مقاومت ۱۷% ای در برابر ترک‌ها و تا ۴۳% بهبود در برابر مقاومت به شیارشدگی دارد.

۱۰% از آسفالت در این مکان از مواد قابل بازیافت تشکیل شده است. ۲۰% از آسفالت رایج بکر را می‌توان با مخلوط Granite که برای Target ساخته شده است، جای‌گزین کرد. Granite انتظار دارد مقدار پلاستیک‌های بازیافتی مورد استفاده در این آسفالت را تا ۲۰۰ بشکه نفت جابجا کند.

به گفته Edgard Hitti، مدیر ملی آسفالت Granite، تیم Granite قصد دارد تا پیچیدگی‌هایی را که یک نوع آسفالت جدید یا متفاوت می‌تواند برای پیمان‌کاران ایجاد کند، به حداقل برساند. “یک مرحله‌ای که به تولید اضافه می شود این است که آسفالت بکر از یک فرآیند اختلاط با پلاستیک عبور می‌کند. اما پس از آن، پیمان‌کار می‌تواند آسفالت تازه عمل‌آوری شده (فورج شده) را پیاده کند انگار که روسازیِ رایج بود.

Hitti می‌افزاید: «تمرکز اصلی پروژه این بود که اطمینان حاصل کنیم که بین پایداری و عمل‌کرد مبادله‌ای ایجاد نمی‌کنیم که در نهایت هدف آنچه را که در اینجا می‌سازیم شکست می‌دهد.»

ذینفعان به این پتانسیل که این پروژه ارائه می‌کند تا اهداف ثبات و مزیت‌شان را تأمین کند، خوش‌بین هستند. Jeffries خاطرنشان می‌کند که «آسفالت به طور کامل عالی پابرجا می ماند. هیچ مشکلی خارج از پارامترهای عادی وجود نداشته است… اگرچه این پروژه در مرحله نمونه اولیه است، اما ما در آسفالت Kansas این را همانند فرصتی ارزشمند برای رشد می‌دانیم.»

پس از یک دوره مشاهده سه تا چهار ماهه، گام بعدی گسترش دامنه نمونه اولیه RAP خواهد بود. Jeffries می‌گوید هدفش این است که سنگ‌فرش را با شش حساب ملی پیمان‌کار به اشتراک بگذارد، در حالی که Hitti می‌گوید Granite ترکیب RAP را در اختیار آژانس‌های صنعتی مانند انجمن کارهای عمومی آمریکا قرار خواهد داد.

تیم‌های Granite و آسفالت Kansas نیز تلاش می‌کنند تا این نسبت که پلاستیک‌های بازیافتی می‌توانند در مخلوط آسفالت جای بگیرند را افزایش دهند. Hitti می‌گوید: «در آزمایش‌های آزمایشگاهی، میزان پلاستیک در آسفالت را دو برابر کردیم، اما هنوز ما نیاز داریم که آن را در دنیای واقعی تکرار کنیم. “طبق آن چیزی که گفته شد، ما قصد داریم که این RAP قابل رقابت با روسازی‌های آسفالت مرسوم را بسازیم تا انگیزه‌های بیش‌‌تری را برای مشتریان خود فراهم کنیم که دوست‌دار محیط زیست شوند.”

 

لینک خبر:

https://www.enr.com/articles/53616-recycled-asphalt-plastics-tested-in-target-parking-lot

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

پلیمرهای دارای حافظه شکلی و رنگی: شبکه دینامیک بر پایه پلی (ε-کاپرولاکتون)

در یک مطالعه‌ اخیر منتشر شده در مجله Applied Materials Today، محققان چینی روشی آسان را برای ساخت مواد دارای حافظه رنگی و شکلی پاسخ‌گویِ چند منظوره هوشمند با استفاده از شبکه پلیمری دینامیک بر پایه پلی (ε-کاپرولاکتون) (PCL) ایجاد کردند که به صورت‌های خاص در سطح مقیاس ماکرو و مقیاس میکرو برنامه‌ریزی شد.

Untitledd

اثرات حافظه شکلی چند منظوره در یک شبکه پلیمری دینامیک برای تغییرات هم‌زمان در رنگ و شکل

محققان از دیسک‌های فشرده (CD) کم‌هزینه به ‌عنوان نانوساختار شبکه (grating) فوتونی استفاده کردند و آن را از طریق نانوچاپ و پیکربندی مجدد پلاستیک بر روی شبکه بر پایه PCL چاپ کردند تا به هر دو شکل‌دهی موقت و دائمی دست یابند.

از آنجایی که هر دو حالت مقیاس ماکرو و میکرو توسط یک محرک مولکولی واحد کنترل می‌شدند، با اعمال گرما، آن‌ها به طور هم‌زمان بهبود می‌یابند. بازیابی اشکال مقیاس میکرو نیز منجر به بازیابی رنگ شبکه پلیمری شد. این شبکه پلیمری دارای حافظه شکلی و رنگی می‌تواند برای رمزدار کردن اطلاعات و پلتفرم‌های انتقال استفاده شود.

مواد دارای حافظه شکلی و رنگی

مواد دارای حافظه شکلی (SMM) دسته‌ای از مواد هوشمند هستند که وقتی در معرض محرک‌های خارجی مانند گرما، نور، بار الکتریکی، میدان مغناطیسی و بسیاری موارد دیگر قرار می‌گیرند، به شکل اولیه خود باز می‌گردند. بنابراین، مناسب است برای گفتن این که آن‌ها می‌توانند اشکال اولیه خود را حفظ کنند. آن‌ها معمولاً در محرک‌های نرم بیونیک و روبات‌های قادر از لحاظ رفتارهای پاسخ‌گو استفاده می‌شوند. به طور کلی، دست‌یابی به یک رفتار پاسخ‌گو در یک ماده هوشمند آسان است، اما ساخت مواد پاسخ‌گویِ چند منظوره بدون تداخل پاسخ درونی چالش‌برانگیز است.

مواد تغییر رنگ‌ دهنده و دارای حافظه، ساختارهای فوتونی مصنوعی پیشرفته‌ را ایجاد کرده‌اند که الهام‌شان را از طبیعت می‌گیرند، مانند پوست آفتاب‌پرست و اختاپوس، بال‌های پروانه، اسکلت‌های بیرونی سوسک، و پرهای پرندگان با ساختارهای تناوبی منظم در محدوده طول موج نور مرئی.

روش‌های متداول مورد استفاده برای ساخت ساختارهای فوتونی شامل لیتوگرافی نانوچاپ، خودآرایی ذرات کلوئیدی، رسوب‌دهی شیمیایی، حکاکی (etching) الکتروشیمیایی و خودآرایی کریستال مایع کلستریک است. شبکه‌های پلیمر دارای حافظه شکلی (SMP) که نانوساختارهای فوتونی دارند، هم حافظه شکلی و هم حافظه رنگی را با معکوس کردن دوره زمانی نانوساختارهای فوتونی هنگامی که در معرض حلال، تحریک حرارت یا نیرو قرار گرفتند، نشان می‌دهند.

درباره مطالعه

در این مطالعه، محققان نانوساختار شبکه (grating) فوتونی یک CD خالی را از طریق نانوچاپ و پیکربندی مجدد پلاستیک بر روی شبکه پلیمری بر پایه PCL چاپ کردند. ابتدا آن‌ها PCL-diol را با پلیمریزاسیون مرسوم حلقه‌گشای ε-CL با استفاده از ۱،۴-بوتاندیول (BDO) به عنوان آغازگر و اکتوات قلع (Sn(Oct)2) به عنوان کاتالیزور سنتز کردند.

پس از آن، PCL-دی‌اکریلات (PCLDA) با ریخته‌گری (casting) محلولی از مخلوط PCL-diol ، ۱،۲- دی‌کلرواتان بدون آب، ۲-ایزوسیاناتواتیل آکریلات، و دی‌بوتیلین‌‌دیلاورات (DBTDL) سنتز شد. شبکه پلیمری NW-PCLDA- trimethylolpropane tris(3-mercapto propionate) (TMPMP)- diazabicyclo [4.3.0] non-5-ene (DBN) (NPT x-D)  نهایی توسط قالب که مواد شیمیایی ذکر شده را خشک می‌کند، سنتز شد.

متعاقباً، سی‌دی‌های خالی به عنوان قالب‌های الگوی پراش برای حصول پایه ساختار فوتونی استفاده شد.

پیش‌پلیمر پلی‌دی‌متیل‌سیلوکسان (PDMS) و یک اتصال‌دهنده عرضی مخلوط شد و روی پایه آماده شده ریخته شد و بعد از آن در دمای ۸۰ درجه سانتی‌گراد به مدت ۲ ساعت پخته شد و برای به دست آوردن قالب طرح‌دار PDMS، لایه برداری شد. در نهایت، ساختارهای فوتونی بر روی شبکه پلیمری NPTx-D با استفاده از یک الگوی PDMS طرح‌دار آماده شده در قالب فشاری داغ برنامه‌ریزی شدند.

Untitledg

(a)

  Schematic of the synthesis of the PCLDA cross-linked network

(b)

 Schematic illustration of the replica molding and nanoimprinting process (the microscale grating structure and corresponding macroscale colors (inset images) of the CD and SMP obtained by LSCM and digital camera, respectively, are indicated by red arrows)

مشاهدات

نتایج کالری‌متری روبشی تفاضلی (DSC) نشان داد پلیمر خطی PCLDA رفتار کریستالی و مذاب مورد انتظار را به ترتیب بین دمای تبلور و دمای ذوب در ۲۹/۶ و ۵۲ درجه سانتی‌گراد نشان داد. علاوه بر این، دمای تبلور و آنتالپی تبلور شبکه‌های NPTx-D با افزایش در محتوای اتصال‌دهنده عرضی TMPMP کاهش یافت زیرا نظم بخش PCL را به شدت قطع و از تبلور جلوگیری کرد.

پایه آلی خنثی شده، DNB، نرمی حرارتی را در شبکه اتصال عرضی القا کرد. آزمون آسودگی از تنش-کرنش ثابت نشان داد که تمام نمونه‌های NPTx-D سرعت آسودگی از تنش سریع‌تری را در دماهای پلاستیک حرارتی بالاتر نشان دادند، و عمل‌کرد آسودگی از تنش به شدت به درجه اتصال عرضی و مقدار اتصال‌دهنده عرضی TMPMP وابسته بود.

آنالیز مکانیکی دینامیکی (DMA) نشان داد که مدول ذخیره به شدت کاهش یافت زمانی که دما از دمای ذوب بخش PCL عبور کرد. اما مدول ذخیره زمانی که دما به دلیل تبادل پیوندهای دینامیکی مجدد افزایش یافت، قدری کاهش یافت.

این مواد برای چاپ شدن در دماهای شبکه موقت و دائمی به ترتیب در ۷۰ و ۱۳۰ درجه سانتی‌گراد آسان بودند. بلورینگی بخش PCL به عنوان یک نقطه تغییر مکان (switching) واحد برای هر دو سطح ماکرو مقیاس و حالت سطح مقیاس میکرومقیاس و رفتار حافظه رنگ شبکه پلیمری NPTx-D عمل کرد. همچنین، نرمی به طور مؤثری تحت شرایط مورد استفاده برای آزمایش‌های حافظه شکلی الاستیک سرکوب شد.

نتیجه گیری

به طور خلاصه، محققان یک شبکه پلیمری دارای حافظه رنگی و شکلی هم‌زمان با استفاده از پلیمر PCL ایجاد کردند و الگوی حافظه شکلی-رنگی را با استفاده از CDهای ارزان‌قیمت ساده حاوی نانوساختارهای شبکه (grating) فوتونی بر روی شبکه پلیمری NPTx-D چاپ کردند. آن‌ها دریافتند که بلورینگی بخش PCL به عنوان یک نقطه switching واحد برای رفتار حافظه شکل و رنگ شبکه پلیمری عمل می‌کند. این پلیمر دارای حافظه شکلی و رنگی جدید پلیمری را می توان برای رمزگذاری اطلاعات و پلتفرم‌های انتقال استفاده کرد.

لینک خبر:

https://www.azom.com/news.aspx?newsID=57959

Multiscale shape-memory effects in a dynamic polymer network for

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

اپوکسی گیاهی، تهیه لیف کربنیِ قابل بازیافت را ممکن می‌سازد

تکنیک جدید تولید همچنین اقتصاد برای خودروهای الکتریکی بازار انبوه را بهبود می‌بخشد.

لیف کربنی ده برابر قوی‌تر از فولاد، تقریباً نصف وزن آلومینیوم و بسیار سفت‌تر از فایبرگلاس، دارای مجموعه‌ای از مزایا است در حالی که آن را یک ماده ایده‌آل برای استفاده در سدان‌های لوکس (به خودروهای سواری معمولی یا اصطلاحاً صندوق دار می‌گویند که دارای سقف ثابت، صندوق عقب مجزا و دو ردیف صندلی بوده و می‌تواند دو یا چهار در داشته باشد. سدان متداول‌ترین شکل طراحی بدنه خودرو است.) و اتومبیل‌های مسابقه فرمول ۱ می‌سازد. به گفته Nicholas Rorrer، دانشمند آزمایشگاه ملی انرژی‌های تجدیدپذیر (NREL)، اما هنوز هم برای اقتصادی شدن برای وسایل نقلیه بازار انبوه به تکامل نیاز دارد. او توضیح داد: لیف کربنی گران است. همچنین ساخت آن انرژی‌بر است، بنابراین کاملاً دوست‌دار گازهای گل‌خانه‌ای (GHG) نیست. در حالی که لیف کربنی را به راحتی قابل بازیافت می‌سازد، می‌تواند در هر دو این زمینه‌ها کمک کند.

فرآیند بازیافت در دمای اتاق آغاز شد

به لطف پیشرفت‌های اخیر در طراحی مواد زیستی، بازیافت لیف کربنی در مقیاس صنعتی می‌تواند از قبل مهیا باشد. از طریق پروژه‌ای که توسط دفتر فناوری‌های خودرو دانشکده انرژی ایالات متحده پشتیبانی می‌شود، تحت Composites Core Program، Rorrer و سایر محققان NREL نشان داده‌اند که ساخت کامپوزیت‌های لیف کربنی با اپوکسی‌های پایه زیستی و سخت‌کننده‌های انیدریدی باعث می‌شود که مواد کاملاً قابل بازیافت باشند از طریق ایجاد پیوندهایی که راحت‌تر تخریب می‌شوند. در واقع، فرآیند بازیافت – به نام متانولیز – می‌تواند به طور انتخابی در دمای اتاق بدون کاهش کیفیت یا آرایش‌یافتگی الیاف آغاز شود. این می‌تواند نشان‌دهنده گامی قوی به سمت یک ماده مدور (circular material) باشد که می‌تواند لیف کربنی را هنگام که در سرتاسر زندگی‌های چندباره استفاده می‌شود، ارزان‌تر و سبزتر کند.

مزایای لیف کربنی در عین حال قوی و سبک‌وزن، ناشی از طراحی لایه‌ای آن است. این یک ماده مرکب از رشته‌های بلند کربن خالص و یک پوشش اپوکسی چسب مانند است که به عنوان ترموست شناخته می‌شود. هنگام پخت، مولکول‌ها در رزین مایع به یکدیگر و اطراف رشته‌های کربنی تابیده شده متصل می‌شوند در حالی که به شبکه‌ای قوی و صلب تبدیل می‌شوند.

اما، ماهیت ترموست اپوکسی پخته شده باعث می‌شود تا این محصولات عالی به سختی از هم جدا شوند، به خصوص بدون آسیب جدی به رشته‌های کربن. محصولات ساخته شده از لیف کربنی – علی‌رغم قیمت ممتازشان – اغلب در پایان عمر خود به همراه هر مزایای کارایی که ممکن است به دست آورده باشند به محل دفن زباله می‌روند.

در واقع، اگرچه لیف کربنی می‌تواند وزن یک خودروی سواری معمولی را به نصف کاهش دهد – بازده سوخت را تا به میزان ۳۵% افزایش می‌دهد – هر گونه مزایای بهره‌وری به طور مؤثر با انرژی پر مصرف GHG که برای تولید آن استفاده می شود، جبران می‌شود. سنتز لیف کربنی شامل دمای بیش از ۱۰۰۰ درجه سانتی‌گراد است.

این واقعیت Rorrer را به فکر فرو برد: “آیا راهی برای استفاده مجدد از لیف کربنی در طول عمر ماده چند منظوره به منظور بازیابی آن لیف و کسب ارزش و مزایای زیست محیطی بیش‌تر وجود دارد؟”

آزمایش با زیست توده

Rorrer و هم تیمی‌ها شروع به آزمایش با این شیمی زیست توده کردند تا بفهمند که آیا می‌تواند یک اپوکسی جدید که برای قابلیت بازیافت طراحی می‌شود را تهیه کند. در مقایسه با هیدروکربن‌‌های نفتی، زیست‌توده حاوی مقادیر بالاتری از اکسیژن و نیتروژن است که مجموعه متفاوتی از امکانات شیمیایی را ارائه می‌دهد.

Rorrer توضیح داد: «ما اساساً رزین‌های آمین اپوکسی – گرماسخت‌های امروزی در لیف کربنی – را با اپوکسی و انیدریدهای سنتز شده از زیست توده، عمدتاً از تبدیل بیولوژیکی و شیمیایی قندها، دوباره طراحی کردیم. ما نشان داده‌ایم که این رزین فرموله‌شده می‌تواند تمام خواص مشابه در رزین‌های آمین اپوکسی امروزی را حفظ کند و/یا از آن فراتر رود، اما همچنین آن‌ها را با طراحی و در دمای اتاق قابل بازیافت می‌کند.»

با استفاده از یک کاتالیزور ویژه، تیم NREL به تجزیه رزین زیستی را در دمای اتاق قادر بود، فرآیندی که به نام “depolymerization” شناخته می‌شود. این به آن‌ها اجازه داد تا رشته‌های کربن را بازیابی کنند در حالی که کیفیت و تراز آن‌ها را حفظ کنند.

بدون دخالت  downcycling

Rorrer گفت: «ما در واقع می‌توانیم کیفیت الیاف را در حداقل سه عمر مواد حفظ کنیم. “بنابراین ما نه تنها می‌توانیم آن را بازیافت کنیم، بلکه می‌توانیم آن را بدون هیچ آسیبی به خواص بازیافت کنیم. ما به هیچ وجه مواد را کاهش نمی‌دهیم.”

همراه با تحقیقات NREL در مورد اکریلونیتریل ارزان قیمت و پایه زیستی به عنوان پیش‌ساز لیف کربنی که جایزه R&D 100 را در سال ۲۰۱۸ به دست آورد، پیشرفت در اپوکسی می‌تواند کمک زیادی به مقرون به صرفه‌تر کردن کامپوزیت‌های لیف کربنی و سازگار با محیط زیست کند.

توانایی استخراج و بازیافت لیف کربنی می‌تواند این ماده را برای خودروهای الکتریکی انبوه اقتصادی‌تر کند در حالی که وزن و فضا را برای باتری‌ها آزاد کند. همچنین ردپای GHG این ماده را حدود ۲۰ تا ۴۰ درصد کاهش می‌دهد. بهتر از آن، می‌تواند بدون افزایش هزینه‌های ساخت به همه این‌ها دست یابد زیرا Rorrer تخمین ‌زد که اپوکسی NREL می‌تواند برای حدود همان قیمت مانند رزین‌های اپوکسی آمین مبتنی بر نفت امروزی تولید شود.

Rorrer افزود: با استفاده از مواد اولیه زیستی به جای مواد اولیه پتروشیمی، ما مجبور نیستیم از انرژی اضافی برای بازسازی چشم‌گیر مواد شیمیایی آن‌ها استفاده کنیم. این به ما امکان می‌دهد مواد پیشرفته را با عمل‌کرد و مزایای زیست‌محیطی دقیق‌تر، ارزان‌تر و موثرتر طراحی کنیم.

لینک خبر:

https://www.plasticstoday.com/automotive-and-mobility/plant-based-epoxy-enables-recyclable-carbon-fiber

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

امکان تولید انبوه پلاستیک‌های زیستی قابل بازیافت با سلولز

یک مقاله جدید در مجله ACS Applied Polymer Materials یک تکنیک آماده‌سازی ساده و مقیاس بزرگ برای تولید فیلم‌های زیست‌پلاستیک سلولزی با کارایی بالا که از الیاف سلولز کربوکسی متیله شده دارای اتصالات عرضی دوگانه (dual-crosslinked) از لحاظ شیمیایی سازگار (CMFs) ساخته شده‌اند، توصیف می‌کند.

ساخت مقیاس بزرگ پلاستیک‌های زیستی قابل بازیافت از زیست‌توده سلولزی تجدیدپذیر مشتق شده از خمیر کرافت چوب نرم (Softwood Kraft Pulp)

تجمع پلی‌استر مصنوعی در این سیاره خطری برای محیط زیست به همراه داشته است. به دلیل مزایایش قابلیت بازیافت، شفافیت نوری و در دسترس بودن منابع، فیلم سلولزی اخیراً به یکی از جذاب‌ترین جای‌گزین‌ها برای جای‌گزینی پلیمرهای مبتنی بر نفت تبدیل شده است.

روش‌های معمولی برای ساخت فیلم‌های سلولزی، مانند فیلتر خلاء و ریخته‌گری محلولی، اما برای صنعتی شدن زمان‌بر و گران‌قیمت هستند. علاوه بر این، این فیلم‌ها هنوز مقاومت به آب و خواص مکانیکی پایینی در رطوبت بالا دارند در حالی که آن‌ها را برای کاربردهای دنیای واقعی نامناسب می‌کند.

سلولز: یک پلاستیک زیستی مهم

پلاستیک‌ها که از ترکیبات نفتی بی‌شماری ساخته شده‌اند، نقش اساسی در حیات انسان و صنعت بازی می‌کنند. اما به دلیل تجزیه‌ناپذیری زیستی و دفع پیچیده فاضلاب‌‌شان، آلاینده‌های روزافزونی در سیاره ما جمع‌آوری شده و به تدریج به ذخیره غذایی نفوذ می‌کنند در حالی که عواقب جدی برای سلامتی و زیست‌محیطی ایجاد می‌کنند.

محققان برای غلبه بر چنین معضلی، مفهوم “زیست پلاستیک” را برای جای‌گزینی کامل پلیمرهای مبتنی بر پتروشیمی پیشنهاد کرده‌اند.

پلاستیک‌های زیستی مشتق شده از مواد زیست‌توده می‌توانند وابستگی به سوخت را کاهش دهند، پایداری انرژی را افزایش دهند، و دی‌اکسید کربن و آلاینده‌های ذرات پلاستیک را کاهش دهند.

علاوه بر این، سلولز رایج‌ترین زیست‌توده تولید شده از درختان و گیاهان روی این سیاره، به طور گسترده برای ساخت محصولات کاغذی و نوشت‌افزارهای سنتی، و همچنین بسته‌بندی کالاها و مواد غذایی به کار برده شده است.

سلولز یک کربوهیدرات پیچیده است که از صدها یا حتی هزاران واحد گلوکز تشکیل شده است که هنگامی که آن‌ها متصل می‌شوند، یک زنجیره طولانی ایجاد می‌کند.

مزایا و کاربردهای مشتقات سلولزی

ترکیبات سلولزی سنتز شده به لحاظ شیمیایی، مانند نانوالیاف سلولز (CNF) ، نانوکریستال سلولز (CNC) و… می‌توانند از طریق واکنش گروه‌های هیدروکسیل سلولز با مواد شیمیایی مختلف، به طور جزئی یا کامل، ساخته شوند.

این ترکیبات سلولزی برای جای‌گزینی پلاستیک مبتنی بر پتروشیمی در کاربردهای بسته‌بندی، عناصر ساختمانی و رابط‌های الکتریکی به دلیل ویژگی‌های قابل بازیافت‌شان، یک‌بار مصرف و ویژگی‌های بی‌خطر از نظر محیط‌ زیست، انتخاب‌های خوبی بوده‌اند.

در سال‌های اخیر، دو استراتژی اولیه برای تولید پلاستیک‌های زیستی مبتنی بر سلولز بسیار مورد توجه قرار گرفته است:

(۱) قرار دادن CNF یا CNC به عنوان تقویت‌کننده در ماتریس‌های پلیمری برای بهبود ویژگی‌های ترمومکانیکی کامپوزیت‌ها.

(۲) ساخت فیلم‌های مبتنی بر نانوسلولز به طور مستقیم با استفاده از قالب‌گیری محلولی، فیلتر مکش، نشاندن بخار، و روش‌های دیگر.

محدودیتهای فیلمهای مبتنی بر نانو سلولز

اما، جذابیت قابل توجه نانوسلولز برای قطرات آب ممکن است منجر به کم آبی محدود و اثربخشی خشک کردن و همچنین ویژگی‌های مکانیکی ناکافی در رطوبت بالا شود.

ساخت یک فیلم مبتنی بر نانوسلولز چند ساعت یا بیش‌تر طول می‌کشد که زمان‌بر و پرهزینه است.

علی‌رغم علاقه روزافزون به نانو و/یا سلولز مولکولی یک‌بار مصرف در حالی که بازده عملیاتی، خواص مکانیکی و پایداری آبی در حوزه مواد زیستی دوست‌دار به لحاظ زیست محیطی را بهبود می‌دهند، یک چالش باقی می‌ماند.

در نتیجه، ایجاد یک تکنیک ساده، سریع و در مقیاس بزرگ مربوط به ساخت مواد زیستی از منابع طبیعی تجدیدپذیر فراوان، که در آن نسخه نهایی باید از نظر ساختاری قوی و قابل اعتماد در رطوبت بالا باشد در حالی که کاملاً شفاف و از نظر محیطی بی‌خطر باشد و در نتیجه رشد صنعتی پلاستیک‌های زیستی را ارتقا دهد بسیار مهم است.

فرآیندی جدید برای ساخت فیلم‌های پلاستیکی زیستی

محققان یک تکنیک مؤثر و سنتی تولید کاغذ ارائه کردند که می‌تواند یک ورق زیست‌پلاستیکی مستحکم، شفاف و مقاوم در برابر آب تولید کند تا این معیارها را برآورده کند.

آن‌ها بر روی الیاف سلولز میکرونی که اغلب نادیده گرفته می‌شوند، تمرکز کردند که نوید بیش‌تری را برای تولید صنعتی در مقیاس بزرگ ارائه می‌دهد.

این روش مستلزم تولید سریع CMFها و چسبندگی نیروهای الکترواستاتیکی یون‌های +Al3 و مونومرهای PAE بر روی الیاف CMF است در حالی که منجر به یک محلول همگن می‌شود که می‌تواند به راحتی با استفاده از تکنیک‌های تولید کاغذ سنتی به یک فیلم تبدیل شود.

در طی مراحل پرس گرم و خشک کردن، پلاستیک‌های خم‌شونده PAE، هر دو اتصال عرضی کووالانسی با الیاف سلولزی و فرآیند خود اتصال عرضی را در بین اجزای PAE تجربه می‌کنند.

یافتهها و نتیجه‌گیری تحقیق

ورق بیوپلاستیک به دست آمده دارای استحکام کششی خوب (۱۵۸/۲ مگاپاسکال)، دوام عالی در آب، افزایش چقرمگی مرطوب، راندمان نوری بهتر و قابلیت اطمینان حرارتی فوق‌العاده از جمله‌ خواص دیگر است.

به طور قابل توجهی، فیلم زیست‌پلاستیک مبتنی بر CMF می‌تواند به صورت مکانیکی تجزیه و بازیافت شود و در حالی که این ماده قادر است تا در طول چرخه تولید بازیافت شود.

علاوه بر این، ویژگی‌های مکانیکی فیلم مبتنی بر CMF دوباره آماده‌شده در حالی که لجن بازیابی شده را به کار می‌گیرند تا ۱۴۵/۹ مگاپاسکال بود که در مقایسه با فیلم‌های اولیه به سختی کاهش یافت.

این روی‌کرد تولید ساده، در مقیاس بزرگ و دوست‌دار محیط زیست می‌تواند منجر به ایجاد ورق پلاستیکی زیستی برای صنایع ساختمانی و تولیدی شود.

 

لینک خبر:

https://www.azonano.com/news.aspx?newsID=38609

Large-Scale Manufacture of Recyclable Bioplastics from Renewable

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com