وضعیت ورود
درحال حاضر شما وارد سایت نشده اید.
آمار بازدیدکنندگان
  • کاربران حاضر: 0
  • بازدید امروز: 107
  • بازدید ماه: 32,506
  • بازدید سال: 260,205
  • کل بازدیدکنند‌گان: 127,108
قیمت روز

فرآیندپذیری

ترموپلاستیک های چقرمه شده

با گسترش روزافزون تقاضا برای استفاده از پلیمرها در صنایع مختلف، جواب‌گو نبودن خواص پلیمرهای شناخته‌‌شده برای کاربردهای خاص، عمل‌کرد بهتر با خطرات کم‌تر برای محیط زیست و فرآیندپذیری آسان­ تر و… دانشمندان علم پلیمر را به توسعه سامانه­ های ماکرومولکولی جدید، واداشت. از این رو روش آمیزه‌کاری (Compounding) به عنوان یک راه‌کار برای پاسخ­گویی به نیازهای صنعت و زندگی روزمره، پیشنهادشده و تحقیقات متعددی در این زمینه انجام گرفته است. این روش برای بهبود عمل‌کرد پلیمرها در اغلب کاربردهای صنعتی، علمی و همچنین تولید مواد با خواص بالاتر از خواص اجزای خالص سامانه می­ باشد.

امروزه مخلوط‌های پلیمری (Polymer Blends) بخش عمده‌ای از محصولات صنعتی را تشکیل می‌دهند. کم‌تر از  %۱۰ از مخلوط‌های پلیمری، امتزاج‌پذیر (Miscible) و طیف وسیعی از آنها امتزاج‌ناپذیر (immiscible) می‌باشند. به مخلوط‌های پلیمری امتزاج‌ناپذیر، آلیاژهای پلیمری (Polymer Alloy) گفته می‌شود. آلیاژهای پلیمری نیز خود به دو دسته سازگار (Compatible) و ناسازگار (incompatible) تقسیم می‌شوند که ناسازگار بودن اجزای آلیاژ خود منجر به بروز خواص ضعیف در آلیاژ پلیمری می‌گردد. در این حالت، جز اصلی تشکیل‌دهنده آلیاژ پلیمریست با ماهیت ترموپلاستیک. جزء الاستومری در آلیاژ برای ایجاد چقرمگی و مقاومت در برابر ضربه مورد استفاده قرار می‌گیرد.

بهبوددهنده‌های ضربه‌پذیری موادی هستند که جهت افزایش مقاومت به ضربه‌پذیری در پلیمرهای سخت و شکننده به آن‌ها اضافه می‌گردند. لاستیک‌ها به دلیل داشتن مقاومت بالا در برابر ضربه، می‌توانند موادی مناسب از این دست به شمار آیند. در اثر ضربه، پلیمرهای سخت به دلیل آن که نمی‌توانند انرژی را تلف نمایند، تمرکز انرژی و ایجاد مرکز تجمع استرس در اثر ضربه باعث شکسته شدنشان می‌شود.

در خصوص ساز و کار شکست مواد پلیمری، تئوری به نام تئوری Griffit وجود دارد که بیان می‌دارد هنگامی که ماده پلیمری می‌شکند که انرژی شکست، بزرگ‌تر و یا مساوی دو برابر انرژی سطح آن پلیمر باشد. به عبارت دیگر

PO

بنابراین اگر به هر نحوی بتوان سمت راست معادله مذکور را افزایش داد، مقدار انرژی لازم برای شکست افزایش یافته است. به بیان دیگر مقاومت ضربه‌ای قطعه بهبود یافته است. لذا در صورتی که بتوان ماده‌ای نرم و لاستیکی شکل به پلیمر شکننده اضافه نمود، در حین ضربه مقداری از انرژی توسط زنجیره‌های لاستیکی جذب می‌گردد و لذا مقاومت ضربه‌ای پلیمر اصلی افزایش می‌یابد. لازم به ذکر است بهبود خواص ضربه‌پذیری پلیمرها می‌تواند در حین واکنش پلیمریزاسیون نیز صورت بگیرد و با افزایش مقدار لاستیک در فرآیند پلیمریزاسیون پلیمر اصلی و به وجود آوردن بلوک‌های لاستیکی در زنجیر اصلی پلیمر از شکنندگی پلیمر اصلی کاست. مثالی از این دست اضافه کردن درصدی مونومر بوتادی‌ان به سیستم پلیمریزاسیون استایرن است. لذا به جای تولید پلی استایرن شکننده، پلی استایرن با قابلیت ضربه‌پذیری بالاتر (High Impact Polystyrene) HIPS تولید می‌گردد.

لیستی از اصلاح­ کننده­ های ضربه­ تجاری موجود در جدول زیر ارائه شده است.

بنابراین اگر به هر نحوی بتوان سمت راست معادله مذکور را افزایش داد، مقدار انرژی لازم برای شکست افزایش یافته است. به بیان دیگر مقاومت ضربه‌ای قطعه بهبود یافته است. لذا در صورتی که بتوان ماده‌ای نرم و لاستیکی شکل به پلیمر شکننده اضافه نمود، در حین ضربه مقداری از انرژی توسط زنجیره‌های لاستیکی جذب می‌گردد و لذا مقاومت ضربه‌ای پلیمر اصلی افزایش می‌یابد. لازم به ذکر است بهبود خواص ضربه‌پذیری پلیمرها می‌تواند در حین واکنش پلیمریزاسیون نیز صورت بگیرد و با افزایش مقدار لاستیک در فرآیند پلیمریزاسیون پلیمر اصلی و به وجود آوردن بلوک‌های لاستیکی در زنجیر اصلی پلیمر از شکنندگی پلیمر اصلی کاست. مثالی از این دست اضافه کردن درصدی مونومر بوتادی‌ان به سیستم پلیمریزاسیون استایرن است. لذا به جای تولید پلی استایرن شکننده، پلی استایرن با قابلیت ضربه‌پذیری بالاتر (High Impact Polystyrene) HIPS تولید می‌گردد.

لیستی از اصلاح­ کننده­ های ضربه­ تجاری موجود در جدول زیر ارائه شده است

پلی الفین‌ها

پلی الفین‌ها را می‌توان با چندین اصلاح‌کننده چقرمه کرد. پلی اتیلن ترکیب شده با پلی اتیلن کلرینه شده و پلی پروپیلن ترکیب شده با حدود ۱۰تا ۴۰ درصد لاستیک EPDM که دارای خصوصیات هوازدگی بهتر از بوتادین یا EVA است. کوپلیمرهای اتیلن-اکتان و پلی اتیلن‌های پلیمریزه شده با استفاده از متالوسن‌ها موثر هستند. ترموپلاستیک الاستومرهای پایه اولفینی (TPO) معمولاً از مخلوط امتزاج ناپذیر پلی پروپیلن ایزوتاکتیک با الاستومر پلی اولفین‌ها تشکیل شده که به عنوان یک اصلاح کننده ضربه عمل می‌کند. چقرمه سازی آن‌ها با استفاده از  اتیلن-پروپیلن، اتیلن-اکتن یا اصلاح کننده‌های اتیلن- هگزان امکان پذیر است.

استفاده گسترده از پلی اُلفین ­ها در کاربردهای مختلف موجب شده است که توجه ویژه­ای به نانوکامپوزیت‌های آنها گردد. مهم­ترین نقیصه‌های این دسته از مواد عبارتند از شکنندگی خصوصاً در دماهای پایین است. افزودن الاستومرها به سبب بهبود چقرمگی آنها می‌تواند در جهت رفع این مشکل بسیار مؤثر باشد. اما این روش به قیمت پایین آمدن مدولشان تمام می‌شود. از این رو سامانه‌های سه جزئی پلی‌الفین/الاستومر/نانوتقویت‌کننده مورد توجه قرار گرفتند که در آنها الاستومرها و تقویت‌کننده‌های با ابعاد نانو به طور هم‌زمان به منظور افزایش چقرمگی و سختی استفاده می‌شوند.

این دسته از مواد در مقایسه با فلزات از وزن کم‌تر، مقاومت زیادتر در مقابل خوردگی و عوامل جوی و از همه مهم‌تر سهولت فرآیند‌پذیری و شکل‌دهی بیش‌تری برخوردار می‌باشد. کاربردهای عمده این مواد در ساخت الکترونیک‌های برقی، موتورهای الکتریکی و ژنراتورها، مبدل‌های حرارتی و… می‌باشد.

در میان پلیمرهای پر مصرف، پلی‌اولفین‌ها و به ویژه از میان آنها پلی‌‌پروپیلن (PP)، به علت داشتن تعادل خوب بین خواص فیزیکی و مکانیکی، فرآیندپذیری آسان، چگالی پایین و قیمت مناسب به طور گسترده‌ای در صنعت مورد استفاده قرار می گیرد. PP یکی از متنوع‌ترین مواد ترموپلاستیکی است که خواص عایقی و مقاومت در برابر رطوبت بسیار خوبی را داراست. این ماده دارای قابلیت تحمل بار برای مدت طولانی در دامنه وسیعی از دما می‌باشد. PP مقاومت خزش برجسته‌ای ندارد ولی مقاومت خستگی آن عالی است. این ماده کاربردهای وسیعی در ساخت الیاف، پمپ‌ها، لوازم خانگی و صنعت خودرو (به عنوان ضربه‌گیرهای خودرو، اجزای داخلی، دستگاه منحرف‌کننده هوا (Spoiler)، سامانه‌های خروج هوا، اجزای زیر کاپوت، خرطومی، بدنه باتری اتومبیل و…) دارد. با این وجود، PP به واسطه شکنندگی (Brittleness)، مقاومت ضربه (Impact Strength) و سفتی (Module) کم در دماهای پایین برای برخی از کاربردها ماده مناسبی محسوب نمی‌شود.

برای جبران این نقیصه معمولاً از کوپلیمرهای PP استفاده‌شده و یا الاستومرها به ویژه کوپلیمرها مانند اتیلن-پروپیلن-مونومر (EPM) و یا از ترپلیمرها مانند اتیلن-پروپیلن-دی‌إن-مونومر (EPDM)، به منظور افزایش چقرمگی (Toughness) به PP افزوده می‌شوند. EPDM یک الاستومر پلی‌الفینی اشباع با کاربردهای وسیع در صنایع مختلف می‌باشد. خواص منحصر به فرد این الاستومر مقاومت بالا در برابر اُزن و اکسیدشدن، دمای انعطاف‌پذیری پایین، پایداری رنگ و توانایی جذب مقادیر زیاد تقویت‌کننده و روغن بدون بو از دست دادن خواص که تمامی این خواص به دلیل ساختار زنجیری اشباع و طبیعت هیدروکربنی این ماده می‌باشد، که آن را به گزینه‌ای مناسب برای کاربردهای مختلف از جمله در بدنه جانبی تایر اتومبیل، روکش سیم، کابل، شیلنگ‌های صنعتی، عایق‌های شیشه، پوشش‌ها و وسایل ورزشی است.

این آلیاژها که ترموپلاستیک چقرمه شده نامیده می‌شوند، دسته‌ای از مواد پلیمری هستند که ترکیبی از ویژگی‌های فرآیندپذیری خوب ترموپلاستیک‌ها در دماهای بالا و خواص فیزیکی الاستومرهای معمولی در دماهای کاربرد را ارائه داده و نقش مهمی را در صنعت پلیمری بازی می‌کنند. این مواد پلیمری کاربرد تجاری بسیاری به ویژه در فضای داخلی و بیرونی خودرو مانند سپر دارند، که در آنها ترموپلاستیک الاستومرهای بر پایه ترپلیمر EPDM پخت (Cure-Vulcanize)‌ نشده و PP اغلب مورد استفاده قرار می‌گیرند.

پلاستیک‌های مهندسی

پلی آمیدها و پلی استرهای اشباع شده را می‌توان با ABS، کوپلیمرهای اتیلن-پروپیلن، ترپلیمرها و لاستیک‌های EPDM گرافت شده با اندرید مالئیک ( جهت افزایش پراکنش و چسبندگی اصلاح کننده) چقرمه کرد. کوپلیمرهای استایرن-بوتادین نیز موثر هستند. مقاومت ضربه آیزود ناچ دار پلی آمید ۶،۶ می‌تواند با اصلاح کننده ضربه ۲۰ برابر افزایش یابد. در حالی که الیاف کوتاه شیشه مقاومت به ضربه را کاهش داده و سبب افزایش مدول می‌شوند. ABS می‌تواند پلی استر اشباع شده و پلی کربنات را چقرمه کند. پلی کربنات را می‌توان با MBS و یا با اضافه کردن لاستیک EPDM گرافت شده به SAN برای بهبود سازگاری، چقرمه کرد.

پلی استایرن

پلی استایرن تمایل زیادی به ترک خوردن دارد و در بیشتر کاربردها به صورت اصلاح شده (پلی استایرن چقرمه شده مقاوم به ضربه یا ABS) استفاده می‌شود. پلی استایرن می‌تواند توسط پلی بوتادین، لاستیک کوپلیمر آکریلونیتریل-بوتادین و کوپلیمرهای بلوکی SBS یا SEBS چقرمه شود. لاستیک را می‌توان قبل و بعد از پلیمریزاسیون استایرن اضافه کرد. دو واکنش رخ می‌دهد، پلیمریزاسیون استایرن و گرافت کوپلیمریزاسیون بین استایرن و بوتادین. مقدار لاستیک اضافه شده بسیار متفاوت است و مقاومت در برابر ضربه می‌تواند از ضریب ۲ به ۴ افزایش یابد. این کار باعث به وجود آمدن اصطلاحات High impact و medium impact می‌شود. با اضافه کردن لاستیک، ظاهر براق پلی استایرن از بین می‌رود، هوازدگی تحت تاثیر باندهای دوگانه (همانطور که قبلا ذکر شد) مطرح می‌شود. همچنین استحکام کششی، مدول و دمای تغییر شکل حرارتی کمی کاهش می‌یابد اما ازدیاد طول در ناحیه شکست به طور قابل توجهی افزایش می‌یابد. هنگامی که منومر استایرن در حضور لاستیک پلی‌ بوتادین با آکریلونیتریل پلیمریزه می‌شود، پلیمر چقرمه ABS حاصل می‌شود. جایگزینی آکریلونیتریل با متیل متاکریلات اصلاح کننده دیگری با نام MBS است. این محصولات می‌توانند به تنهایی یا برای چقرمه سازی پلاستیک‌های شکننده به کار روند. ABS به تنهایی استفاده می‌شود و MBS برای چقرمه سازی PVC سخت به طور گسترده به کار می‌رود. مقدار بالای آکریلونیتریل مقاومت شیمیایی را بهبود بخشیده اما وضوح را کاهش می‌دهد.

پلی وینیل کلراید

همانطور که گفته شده PVC می‌تواند توسط MBS چقرمه شود. همچنین می‌توان از متاکریلات بوتیل اکریلات یا اصلاح کننده‌های هسته-پوسته متاکریلات-پلی بوتادین، ترپلیمر اکتیل-آکریلات-استایرن، ABS، MABS، EVA و یا پلی اتیلن کلرینه شده استفاده کرد. از پلی اتیلن کلرینه شده و آکریلیک‌ها برای PVC در کابردهای ساختمانی نظیر لوله استفاده می‌شود. نیاز به استفاده از اصلاح کننده ضربه در قاب‌های پنجره خصوصاً به هنگام حمل و نقل و نصب احساس می‌شود. ABS مقاومت شیمیایی را بهبود می‌بخشد اما به مقدار بالایی از آن نیاز است و محصول را مات می‌کند، در حالی که MBS محصولات شفاف ارائه می‌دهد و حتی در PVC نرم شده نتایج خوبی را به دنبال دارد. با این حال هر دو اصلاح کننده با مقاومت در برابر هوا متوسط، پلیمر را ترک می‌کنند. از جنبه‌ی مثبت آن، می‌توان به افزایش سرعت ذوب و استحکام مذاب اشاره کرد که مانند یک کمک فرایند در جهت بهبود فرایند عمل می‌کند.

آنچه که در هنگام آلیاژ نمودن این دو پلیمر با یکدیگر مطرح می­گردد، عدم سازگاری آنها با یکدیگر است. به همین دلیل سامانه از خواص مکانیکی ضعیف رنج می‌برد. علت این ناسازگاری قطبیت و ساختار متفاوت بین فازهای ترموپلاستیک و الاستومری است. چسبندگی بین سطحی ضعیف و تنش بین سطحی (Interfacial Tension) بالا بین فازهای ترموپلاستیک و لاستیک، دلایل اصلی ناسازگاری این سامانه‌ها هستند. ناسازگاری میان PP و  EPDMهمچنین ممکن است به تفاوت در میزان بلورینگی (Crystallinity) دو پلیمر نسبت داده شود. از سوی دیگر، به علت سازگاری کم بین فاز لاستیک و ترموپلاستیک و ائتلاف (Coalescence) ذرات پراکنده لاستیک، ترموپلاستیک الاستومرها مورفولوژی ناپایداری دارند. در مطالعات صورت گرفته برای پایدارسازی مورفولوژی آلیاژ، فاز لاستیک به صورت درجا در طول اختلاط مذاب (Melt Mixing) ولکانش (Vulcanization) شد. در حالی که برای بهبود سازگاری و رسیدن به پراکندگی بهتری از ذرات لاستیک، استفاده از سازگارکننده مناسب مانند کوپلیمر بلوکی یا پیوندی گزارش شده است.

نکته‌ای که باید به آن توجه داشت این است که در آلیاژ پلی­ پروپیلن با یک فاز الاستومری نرم، هم‌زمان با افزایش چقرمگی و در نتیجه افزایش مقاومت ضربه، مدول کاهش می­یابد؛ بنابراین استفاده از یک پرکننده نانو (Nano-Filler) در کنار استفاده از الاستومر و تهیه یک آلیاژ نانوکامپوزیتی، می­تواند تعادلی بهینه از چقرمگی و سفتی را ایجاد کند.

به علت شرایط ترمودینامیکی نامطلوب بین دو فاز، بیش‌تر سامانه‌های دو جزئی تمایل دارند تا در آمیزه، فازهای مجزا از هم تشکیل دهند. از این رو چسبندگی ضعیف بین دو فاز در ناحیه فصل مشترک منجر به خواص پایین سامانه می‌گردد. به منظور رفع این مشکل و بهبود خواص سامانه، تلاش‌های برای سازگارسازی پلیمرها و تقویت برهم‌کنش بین آنها صورت گرفته است.

خواص آلیاژهای پلیمری به شدت به ریزساختار (Micro-Structure) و ویژگی‌های فصل مشترک (Interface) وابسته است. وقتی اجزای مخلوط با یکدیگر امتزاج­ پذیر هستند، عمل‌کرد محصول نهایی وابسته به خواص اجزاء به صورت جداگانه و به نسبت اختلاط آن‌هاست. اما از آنجا که اغلب پلیمرها امتزاج­ناپذیر هستند، برای تولید یک محصول با خواص بهینه لازم است ساختار فازی و چسبندگی بین سطحی میان فاز­های آلیاژ کنترل شود. قابل ذکر است که تحول زمانی و توسعه مورفولوژی در این سامانه­ ها وابسته به متغیرهایی مانند تنش بین سطحی اجزا، خواص ریولوژیکی اجزاء، تاریخچه حرارتی و تغییر شکل اعمال­ شده بر آلیاژ می­باشد.

یکی از روش‌های موجود برای کنترل مورفولوژی و بهبود چسبندگی میان فازها، استفاده از پلیمرهایی است که در سامانه‌های دو فازی نقش سازگارکننده (Compatibilizer) را داشته باشد. سازگارکننده ماده‌ای است که وقتی به یک آلیاژ پلیمری اضافه می‌شود سبب افزایش سازگاری اجزای پلیمری آلیاژ می‌شود. این سازگارکننده ­ها یا به صورت جداگانه به سامانه اضافه می­شوند مانند کوپلیمرهای پیوندی (Graft Copolymer) یا کوپلیمرهای دسته‌ای (Block Copolymer) و یا از طریق واکنش میان اجزای آلیاژ، در فصل مشترک فازها ایجاد می­ شوند. استفاده از کوپلیمرهای پیوندی و یا کوپلیمرهای دسته‌ای به طوری که هر جزء از کوپلیمر به یکی از فازها تمایل داشته باشند و در نهایت بتواند مانند یک پل میان دو فاز ارتباط و چسبندگی (Adhesion) مناسب ایجاد نماید، ساده‌ترین راه برای درک ساز و کار سازگارکننده در آلیاژهای پلیمری است. سازگارکننده­ها با قرارگرفتن در فصل مشترک، تنش بین سطحی میان فازها را کاهش می‌دهند و مورفولوژی توسعه­ یافته را پایدار می‌کنند. انتخاب سازگارکننده مناسب برای یک سامانه و همچنین تعیین مقدار بهینه استفاده از سازگارکننده یکی از موضوعات مهم مطرح در صنعت و مراکز تحقیقاتی می‌باشد.

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com 📧

عوامل پراکنده ساز و اتصال دهنده برای پلاستیک های پرشده

در صنعت پلاستیک پرکننده ­ها نقش مهمی را در رسیدن به استحکام، پایداری ابعادی، و دیگر خواص مورد نیاز برای کاربردهای مورد نظر، دارند. عمل کرد پلیمرهای تقویت ­شده نه تنها به مشخصات فیلر، بلکه به میزان پراکنش و نیز به بر هم ­کنش ­های ایجاد شده در سطح مشترک فیلر-پلیمر، بستگی دارد. پراکنش خوب پرکننده در یک رزین پلیمری برای دست یابی به عمل کرد مطلوب در کاربرد نهایی بسیار مهم است .به منظور پراکنش مؤثر ماده­ پرکننده، در ابتدا لازم است که در مورد عوامل پراکنده­ ساز و اتصال دهنده، چگونگی عمل کرد این مواد افزودنی در سطح پرکننده/پلیمر و نیز مزایای استفاده از آن  ها در فرمولاسیون، در راستای ارائه­ عمل کرد بهتر و هزینه­ کمتر، بیش تر بدانیم.

چرا به عوامل پراکنده ­ساز و اتصال ­دهنده نیاز داریم؟

از چند دهه­ گذشته تا کنون، ترکیب مواد پرکننده­ی معدنی و آلی در یک ماتریس پلیمری از اهمیت صنعتی قابل توجهی برخوردار بوده است. این افزودنی­ ها برای تولید کامپوزیت­ های جدید با خواص مطلوب جهت استفاده در کاربردهای خاص به ترکیب اضافه می­ شوند. رنگدانه ­ها، مواد پرکننده، و سایر مواد جامد با اندازه­ بسیار کوچک را می­ توان از طریق افزودن عوامل پخش کننده و عوامل اتصال، با سهولت بیشتری در ترکیبات پلاستیکی گنجاند. پخش کننده­ ها برای خیس کردن­، پایداری و افزایش میزان افزودن رنگدانه ­ها و سایر مواد پرکننده بکار می ­روند. آنها معمولاً در کامپوزیت ­ها و نانوکامپوزیت­ ها برای موارد زیر استفاده می­شوند: پراکنش مناسب و افزایش سطح بر هم ­کنش بین پرکننده مورد استفاده و ماتریس پلیمری بنابراین، عوامل پراکنده ­ساز و نیز عوامل اتصال­دهنده به تولید یک سوسپانسیون پایدار کمک می­ کنند تا بتوان بدون هم­زدن مکانیکی ان­ها را فرآیند کرد و در نتیجه تجمع ذرات را تا حد امکان کاهش داد. در همین راستا: انرژی مورد نیاز برای پراکنش کاهش و همگنی محصولات نهایی بهبود می ­یابد. بعلاوه، در نتیجه­ پراکنش بیش تر، استحکام رنگ رنگدانه­ ها افزایش می ­یابد و منجر به افزایش بازده آن­ها خواهد شد. در هر غلظتی، عوامل پراکنده­ ساز و عوامل اتصال­ دهنده می­ توانند به طور موثری فرآیندپذیری، خصوصیات مکانیکی و زیبایی پلاستیک­ ها را افزایش دهند.

مزایای استفاده از عوامل پراکنده ­ساز در کامپوزیت­ ها: 

  • ویسکوزیته کمتر/بهبود جریان پلیمر جهت افزایش بازدهی به معنی پر کردن بهتر قالب، تولید قطعاتی با دیواره­ی نازک تر (نمودار پایین).

 

Untitled

 

 

  • افزایش استحکام ضربه
  • تنش تسلیم و ازدیاد طول تا پارگی بالا
  • استحکام رنگ بالاتر در نتیجه­ پراکنش بهتر
  • افزایش زیبایی
  • مسدود شدن سطح پرکننده و عدم جذب مواد افزودنی دیگر از پلیمر

بهبود خواص ذکر شده پلاستیک­ ها را مناسب استفاده در کاربردهایی نظیر موارد زیر می­ سازند:

  • بسته ­بندی
  • قطعات الکترونیکی
  • اتومبیل
  • هوافضا
  • لوازم خانگی

ساز و کار:

چسبندگی پلیمر به سطح پرکننده توسط عواملی بهبود می­ یابد که حداقل دارای دو گروه عاملی باشند. یک گروه به سطح پرکننده و گروه دیگر چسبندگی به پلیمر را ایجاد کرده و به طور مؤثری از تجمع ذرات پرکننده جلوگیری می کند.

ساختار کلی پراکنده­ ساز شامل یک گروه لنگر (A) است که باید به صورت شیمیایی با سطح فیلر پیوند برقرار کند و یک گروه بافر (B) که ذرات را از هم جدا کرده و در نتیجه ذرات به هم نمی­ چسبند. عوامل پراکنده ­ساز به ذرات می­ چسبند اما هیچ گونه برهم ­کنش قوی و خاصی با پلیمر اطراف ندارند. این مواد باعث افزایش همگنی شده و از ایجاد نقص­ هایی که در نقاط تجمع ذرات به وجود می­ آیند جلوگیری می ­کنند.

ساختار کلی عامل اتصال­ دهنده اما، از یک گروه لنگر (Anchor) (A)، یک گروه بافر/پل (Buffer/Bridge) (B) و یک گروه جفت­کننده (Couplant) (C) تشکیل شده است. عوامل اتصال­ دهنده در اصل مولکول­ های هیدروکربن با زنجیره کوتاه هستند، که یک انتهای آن ها با پلیمر سازگار یا واکنش پذیر است در حالی که انتهای دیگر قادر به واکنش با الیاف یا پرکننده ­هاست.

Untitled

این عوامل به ذرات می­ چسبند اما باید از طریق پیوندهای شیمیایی یا گره­ خوردگی­ های زنجیری به پلیمر هم متصل شوند تا استحکام را برای ماده به ارمغان بیاورند.

Untitled

معمولاً الیاف یا ذرات پرکننده، قبل از قرار گرفتن در ماتریس پلیمر با عامل جفت­کننده اصلاح شده و با یک لایه­ سطحی به صورت شیمیایی پوشش داده می ­شوند.

انواع پراکنده­ سازها

عوامل پراکنده ­ساز موجب بهینه شدن توزیع مواد پرکننده در ترکیبات می­ شوند. در طی فرآیند پراکنش، این مواد افزودنی به پوشاندن سطح تازه تشکیل شده­ از ذرات اولیه کمک می­ کنند. بدین ترتیب، آنها از تجمع و کلوخه شدن ذرات جلوگیری می­ کنند.

انواع پراکنده­ سازها مشابه انواع عوامل اتصال هستند چرا که در هر دو مورد، شیمی مورد نیاز برای اتصال ماده­ افزودنی به سطح پرکننده یکسان است.

انواع مختلف عوامل پراکنده ­ساز و عوامل اتصال دهنده شامل موارد زیر می­ شوند:

  • ارگانوسیلان­ ها
  • ارگانومتالیک ­ها (مانند تیتانات ­ها، آلومینات­ ها و زیرکونات­ ها)
  • اسیدهای غیراشباع
  • پلیمرهای دارای گروه عاملی اسیدی
  • پراکنده ­سازهای پلیمری
  • واکس ­ها ( پلی­ اتیلن، پلی­ پروپیلن، متالوسن، و …)
  • و دیگر موارد…

هیچ عامل پخش ­کننده یا اتصال­ دهنده­ای مناسب همه سیستم­ های پرکننده-پلیمر نیست. برخی از این عوامل معمولاً بیش تر از سایرین کاربرد دارند، در حالی که برخی دیگر در موارد خاص استفاده می­ شوند.

عوامل اتصال­ دهنده و پخش­ کننده­ سیلانی

در طی اصلاح سطح یک ماده پر کننده یا رنگدانه با سیلان، یک واکنش بین گروه های عاملی ماده پرکننده یا رنگدانه (مانند گروه­ های OH) و گروه­ های آلکوکسی سیلان انجام می­ شود تا یک سطح عامل دار شده­ سیلانی ایجاد شود.

به منظور بهبود سازگاری پرکننده با ماتریس پلیمر، می ­توان سطح پرکننده را از طریق ایجاد برهم ­کنش­ های خاص یا واکنش شیمیایی بین گروه عاملی پلیمر و گروه عاملی آلی ارگانوسیلان، عامل ­دار کرد. عاملیت سیلان نیز باید متناسب با ماتریس پلیمر انتخاب شود.

اصلاح سیلانی هم­چنین به ایجاد یک لایه­ محافظ می­ انجامد که از کلوخه شدن مجدد ذرات جلوگیری می­ کند.

استفاده از عامل پخش­ کننده­ سیلانی در فرمولاسیون ترموپلاستیک، لاستیک و یا ترموست پرشده، مزایای زیادی به همراه دارد که در نهایت باعث فرآیندپذیری آسان­ تر و یا عمل کرد بهتر محصول نهایی می­ شود.

فرمول عمومی یک ارگانوسیلان­ دارای دو نوع گروه عاملی است:

(RnSiX(4-n

  • R یک گروه عاملی آلی است که عامل اتصال را قادر به برقراری پیوند با رزین­ های آلی و پلیمرها می­ کند.
  • X یک گروه قابل هیدرولیز، غالباً آلکوکسی، اسیلوکسی، آمین، و یا کلرین است.

یک عامل اتصال­دهنده­ سیلانی در اصل به عنوان نوعی واسطه عمل کرده و سطح پرکننده را به ماتریس پلیمر متصل می کند. از طریق هیدرولیز، یک گروه فعال سیلانول تشکیل می­شود که می­ تواند با سایر گروه­ های سیلانول از جمله گروه­ های روی سطح سیلیکا، سیلیس و سایر فیلرها (که در سطح خود گروه هیدروکسی دارند)، متراکم شده و پیوند سیلوکسان ایجاد کند. این ویژگی­ عوامل اتصال سیلانی را به گزینه ­ای مناسب برای بهبود استحکام مکانیکی و سختی کامپوزیت­ ها، ارتقای چسبندگی رزین ­ها، و هم­چنین اصلاح سطح مبدل می ­کند.

پخش ­کننده ­ها و عوامل اتصال آلی فلزی (organometallic) (تیتانات­ ها، زیرکونات ­ها، آلومینات­ ها)

پخش­ کننده­ ها و عوامل اتصال آلی فلزی بعنوان پل ­های مولکولی در سطح مشترک بین فیلرهای معدنی (مانند CaCo3، BaSO4، گرافیت، تالک، دوده، سیلیکا، و اکسیدهای فلزی) و پلیمرها عمل کرده و غالباً به منظور افزایش انعطاف­ پذیری به کار برده می­ شوند.

در خانواده­ عوامل اتصال ­دهنده­ آلی فلزی، تیتانات ­ها بیش از زیرکونات­ ها و آلومینات­ ها دارای محبوبیت هستند.

عوامل اتصال ­دهنده­ آلی فلزی غالباً از طریق پیوند کووالانسی، نیروهای ون­دروالس و پیوند هیدروژنی پیوند برقرار می­ کنند و هم برای ترموپلاستیک­ ها و هم برای رزین­ های ترموست مناسب هستند. همان طور که در بالا ذکر شد، این مواد افزودنی بر روی پرکننده­ هایی مانند کربن سیاه، گرافیت، سولفات باریم و سایر مواد پرکننده­ بدون گروه هیدروکسی مؤثر هستند.

پراکنده­ سازهای پلیمری

پخش کننده ­های پلیمری، که به آن ها Hyperdispersants نیز گفته می شود، مواد پلیمری هستند که برای سطوح عمل کردی  به مراتب بالاتر طراحی شده ­اند. این مواد به طور معمول دارای وزن مولکولی بالاتری هستند و این بدان معنی است که ممکن است حاوی چندین گروه لنگر و زنجیره ­های پایدارکننده باشند. پراکنده ­سازهای پلیمری می ­توانند متناسب با طیف وسیعی از رنگدانه­ ها یا مواد پرکننده و در محیط­ های مختلف طراحی شوند.

در مقایسه با محلول ­های پخش کننده­ استاندارد مانند ، پراکنده­ سازهای پلیمری به دلیل ساختار و ویژگی­های خاصشان، مزایا و عملکرد بی­ نظیری را برای ترموپلاستیک ­ها، ترموست­ ها و رنگ­ دهنده­ های مایع ارائه می­ دهند. از جمله این مزایا می ­توان به موارد زیر اشاره کرد:

  • کیفیت بالاتر – استحکام بالای رنگ
  • انعطاف ­پذیری بهبودیافته
  • بهبود فرآیندپذیری و افزایش تولید

بهترین عوامل پراکنده ­ساز برای پرکننده ­های مختلف به ترتیب:

انواع مختلفی از پرکننده ­ها در دسترس هستند که هر کدام به عوامل پراکنده ­ساز و اتصال­ دهنده­ متفاوتی نیاز دارند. این پرکننده ها عبارتند از:

  • دوده
  • کلسیم کربنات
  • سیلیکای رسوبی
  • آلومینیوم هیدروکسید
  • تالک
  • کائولین
  • و موارد دیگر…
  • Untitled

 

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com 📧