وضعیت ورود
درحال حاضر شما وارد سایت نشده اید.
آمار بازدیدکنندگان
  • کاربران حاضر: 2
  • بازدید امروز: 4,592
  • بازدید ماه: 69,344
  • بازدید سال: 875,696
  • کل بازدیدکنند‌گان: 241,742
قیمت روز

فیلر

تجدید علاقه به کامپوزیت‌های طبیعی!

پرکننده‌ها و الیاف طبیعی گیاهی جاذبه جدیدی پیدا کرده‌اند از آنجایی که کاربران خواهانِ کامپاندهای پلاستیکی پایدارتر و اغلب سبک‌تر هستند.

Jennifer Markaria گزارش می‌دهد.

فیلرها و الیاف گیاهی طبیعی یا تجدیدپذیر از ابتدای آغاز صنعت پلاستیک گزینه‌ای برای ترکیبات پلیمری بوده است. اما تمرکز اخیر بر کاهش ردپای کربن جلب توجه جدیدی به آن‌ها است. در حالی که در برخی موارد، مواد گیاهی موجود تا به امروز فاقد خواص مکانیکی بوده تا جای‌گزین مستقیم الیاف شیشه شوند. فرمول‌سازان را‌ه‌های زیادی برای جبران این موضوع پیدا کردند، چه راه‌های ترکیب با شیشه یا به‌کارگیری روش‌های جدید برای بهبود خواص پایه مواد گیاهی. بخش خودرو سال‌ها است که در صدر کار برای ترکیب مواد طبیعی قرار گرفته و به دنبال افزایش استفاده از محتوای پایدار با حفظ عمل‌کرد است. Alper Kiziltas کارشناس فنی فورد می‌گوید: چندین بازار، سیاست و عوامل فنی در حال آمدن هستند تا الیاف طبیعی را گزینه‌ای جذاب‌تر برای کاربردهای خودرویی کنند. این شامل تغییر در رفتار مصرف‌کننده، چارچوب‌های سیاست فعلی، افزایش استفاده از پلاستیک در خودروها، نگرانی‌های زنجیره تأمین برای الیاف شیشه و نوآوری‌های تحقیق و توسعه حاصل از تأمین‌کنندگان الیاف طبیعی است. Kiziltas همچنین بیان کرد: این در حال تبدیل شدن به یک استراتژی تجاری اصلی برای صنعت خودرو است تا با آینده منابع محدود مقابله کند. استفاده از الیاف طبیعی پایداری زیست‌محیطی شرکت ما را بهبود می‌بخشد. براساس مطالعات درونی ما و داده‌های شخص ثالث، قطعاً مزایای LCA (ارزیابی چرخه عمر) در مقابل مواد معدنی و الیاف وجود دارد. استفاده از این مواد در حال گسترده‌تر شدن است. Kiziltas اشاره می‌کند که گروه مواد در حال ظهور و پایداری در فورد، تحقیقات کامپوزیت‌های پایدار را از سال ۲۰۰۰ را اجرا کرده است که منجر به استفاده از طیف گسترده‌‌ای از مواد تجدیدپذیر نظیر کنف، پوست برنج و سلولز می‌شود. برخی از آن‌ها کاندیدهای بدیهی‌تری نسبت به دیگری هستند. آزمایشات اخیر فورد نشان داده است که پوست قهوه پس از فرآیند بیوکربونیزاسیون می‌تواند جای‌گزین تالک در کامپاندهای PP شود. آزمایش پوست قهوه به عنوان روشی برای استفاده از ضایعات کشاورزی جهت ایجاد یک محصول پایدار انجام شد. Kiziltas  بیان کرد: در حالی که آزمایشات اولیه مشکلاتی از قبیل بو، جذب آب و کربنی کردن قهوه این نگرانی‌ها را حل کرد و سازگاری بهتر با ماتریس PP را نتیجه داد. سازگاری بهبود یافته همراه با کاهش آب دوستی پر کننده کربنی شده باعث کاهش جذب رطوبت توسط قطعه کامپوزیت می‌شود. تیم فورد فرمول PP را با استفاده از ۲۰ درصد کربن زیستی (پوست قهوه) برای فورد ۲۰۲۰ توسعه داد تا جای‌گزین تالک ۴۰% در چراغ جلو تزریقی شود. Kiziltas می‌گوید: با استفاده از پوست قهوه (کربن زیستی) وزن را ۱۷% و هزینه را ۵% کاهش دادیم، بدون این که فرآیند یا عمل‌کرد قطعه قربانی شود.

Untitledq

فورد همچنین توانست از دمای فرآیند کم‌تری برای قالب‌گیری بخش بایوکامپوزیت استفاده کند که منجر به چرخه خنک‌سازی کوتاه‌تر و صرفه‌جویی انرژی می‌شود. یک صرفه‌جویی اضافی در حدود ۱۵% در انرژی مصرف شده به هنگام اکسترود کردن مواد حاوی کربن زیستی وجود دارد که دلیل آن روان‌کاری مواد آلی در مقایسه با رئولوژی مواد معدنی است. Kiziltas بیان می‌کند: به طور کلی ما نتایج این ماده کامپوزیت نوآورانه را در صرفه‌جویی کل انرژی ۲۵% تخمین زدیم. تیم تحقیق و توسعه فورد نیز در حال بررسی پرکننده‌های کربن زیستی است. با استفاده از پیرولیز زیست توده جهت دست‌یابی به ماده متخلخل تولید می‌شوند که به عنوان یک راه حل جهت بهبود پایداری گرمایی مواد طبیعی است. الیاف طبیعی دارای پایداری حرارتی کمتری نسبت به بسیاری از الیاف جای‌گزین مصنوعی، محدود شدن کاربرد آن‌ها به دمای فرآیند پایین پلیمر (کمتر از ۲۰۰ درجه) و محیط‌های خودرو با دمای پایین هستند. مطالعات اخیر ما ثابت کرد که می‌توانیم با استفاده از کربن زیستی به عنوان پرکننده در کامپوزیت‌های ترموپلاستیک مهندسی مانند PA6 و PA66 استفاده کنیم.

نانو سلولز

Performance Biofilaments کانادا که با حمایت از ercer International و Resolute Forest Products می‌گوید: تکنولوژی فرآیند اختصاصی با بهره‌گیری از الیاف چوب آن‌ها را به نانوفیبریل سلولز (NFC) با استحکام و خلوص بالا تبدیل می‌کند. مطابق گفته‌ Geoff Fisher مدیر توسعه این شرکت، مواد NFC در ترموپلاستیک‌ها برای طیف وسیعی از کاربردها در حال ارزیابی هستند. عمل‌کرد بیوفیلامنت‌ها اخیراً با یک سری آزمون‌های مرکز تحقیق و توسعه مواد خودرویی شخص ثالث در کانادا تکمیل شد. ما NFC خود را در یک سیستم هیبریدی با الیاف شیشه در آمیزه‌های PP ترکیب کردیم و نتایج امیدوارکننده‌ای به دست آوردیم. Fisher می‌گوید: هدف این سری آزمایش نشان دادن این که بتوانیم پایداری محتوا را در آمیزه PP افزایش دهیم (یعنی افزایش محتوای الیاف طبیعی و کاهش محتوای الیاف شیشه) و سطح بالایی از عمل‌کرد را حفظ کنیم. این شرکت در حال ساخت یک کارخانه تجاری برای تولید NFC است که انتظار می‌رود تا پایان سال ۲۰۲۲ راه‌اندازی شود. Green Dot Bioplastics در ایالات متحده پلیمرهای زیستی و قابل کمپوست را تولید می‌کند. Terratek پلاستیک تقویت شده با الیاف طبیعی آن در خط تولید ۲۰۲۰ تجاری‌سازی شده است. این مواد کامپوزیتی زیستی از الیافی مانند سیزال، بامبو آمریکایی و الیاف جوت احیا شده برای جای‌گزینی الیاف شیشه در PP ،PE و PA استفاده می‌کند. در حالی که الیاف طبیعی جای‌گزینی ۱:۱ برای الیاف شیشه نیستند، آن‌ها یک گزینه پایدار را در بسیاری از کاربردها فراهم می‌کنند که تقویت و سختی فراتر از مواد پر نشده مورد نیاز است. شرکت می‌گوید که هم کامپاند و هم مستربچ الیاف طبیعی را تأمین می‌کند. Mark Remmert مدیر عامل Green می‌گوید: عمل‌کرد و تأمین، دو عامل کلیدی در انتخاب الیاف طبیعی هستند. ما باید بتوانیم از یک محصول تکرارپذیر و عمل‌کرد آن برای مشتریانمان اطمینان حاصل کنیم. بامبوی آمریکایی یک چمن بومی با خواص فیزیکی مطلوب و شیوه‌های رشد پایدار است. سال گذشته Green Dot Bioplastics با توامندترین شرکت در زنجیره تأمین، Mayco International برای حذف اتلاف و ضایعات الیاف جوت از فرآیند Mayco شریک شد، تا یک ماده NFRP جدید ایجاد کند. Sarah Harbaugh مدیر فروش و بازاریابی شرکت می‌گوید: به جای ضایعات و دفن آن، از بهره‌گیری آن‌ها و ترکیب در گرانول بیوکامپوزیت برای کاربردهای دیگر استفاده می‌کنیم. مطابق اظهارات Luis Roca Blay  رهبر آمیزه‌سازی، سازمان تحقیقات اسپانیایی Aimplas، بسیاری از الیاف طبیعی را برای استفاده به عنوان افزودنی تقویت‌کننده در پلاستیک‌های کامپوزیتی زیستی را در طول سال‌ها بررسی کرد. نمونه‌های آن شامل: کنف، سیسال، کتان، جوت و … هستند. هنگام توسعه آمیزه از پلاستیک زیستی، او پیشنهاد می‌کند که استفاده از الیاف طبیعی مطلوب‌تر باشد؛ به طوری که بسیاری از اجزا تا حد امکان تجدیدپذیر و در برخی موارد قابل کمپوست باشد.

Untitledz

نگرانی کمپوست‌سازی

کمپوست‌پذیری ویژگی جذاب رو به رشد در اروپا به ویژه برای بسته‌بندی است. با این حال اقلام بسته‌بندی ساخته شده با استفاده از پلاستیک قابل کمپوست تقویت شده با پایه گیاهی الیاف ممکن است در دست‌یابی به استاندارد EN13432 برای کمپوست‌پذیری صنعتی مشکل داشته باشند، بسته به درصد الیاف استفاده شده و ضخامت بخش. او می‌گوید: آسیاب کردن بسته‌بندی قبل از کمپوست‌‌سازی راه حلی برای این مشکل ارائه می‌دهد. استحکام و وزن کامپوزیت عوامل کلیدی در بسیاری از مصارف نهایی هستند. Roca همچنین می‌گوید: الیاف طبیعی جای‌گزین مستقیمی برای الیاف شیشه در راستای خواص تقویت‌کنندگی نیست اما اضافه می‌کند که می‌تواند مواد تقویت‌کننده معدنی را جای‌گزین کند و وزن را کاهش دهد. سایر افزودنی‌ها مانند اصلاح‌کننده‌های ضربه ممکن است برای ایجاد تعادل ویژگی لازم استفاده شود. Aimplas اخیراً تأخیرانداز شعله‌ در فرمولاسیون حاوی الیاف طبیعی را مورد مطالعه قرار داده است. Roca گزارش می‌دهد که در یک فرمول اثر منفی در به تأخیر انداختن شعله یافت نشد. جای‌گزینی پلاستیک با درصدی از الیاف طبیعی سبب کاهش انتشار گرما می‌شود. همچنین مطالعه فرمولاسیون‌های حاوی الیاف طبیعی و بازدارنده شعله مبتنی بر فسفر مورد بررسی قرار گرفت و تأیید شد که برهم‌کنشی مضر بین آن‌ها نیست. انجمن تحقیقاتی نروژی RISE PFI می‌گوید که به پیشرفت در توسعه بیوکامپوزیت‌های تولید شده مبتنی بر پلیمرهای زیستی به عنوان مثال الیاف زیستی، نانوسلولز و لیگنین ادامه می‌دهد. Gary Chinga Carrasco رهبر دانشمند در Biopolymers و Biocoposite منطقه در اتحادیه می‌گوید: این‌ها در حال توسعه و ارزیابی برای طیف وسیعی از کاربردها از جمله زیربنا، خودرو، بسته بندی نوشیدنی و غذا، مراقبت‌های بهداشتی و ساخت افزایشی (چاپ سه‌بعدی) هستند. این انجمن دارای یک آزمایشگاه کاملاً مجهز به چاپ سه‌بعدی جهت حمایت از افزایش تقاضا است. شرکای صنعتی به دنبال زیست پایه و راه حل‌های مواد پایدار برای چاپ سه‌بعدی و همچنین قالب‌گیری تزریقی هستند. چاپ سه‌بعدی امکان خوبی را برای ساخت سازه‌های پیچیده‌ای که ساخت آن‌های با فرآیندهای مرسوم آسان نیست فراهم می‌کند. چاپ سه‌بعدی نه تنها برای نمونه‌سازی استفاده می‌شود بلکه از آن برای ساخت دستگاه‌های کاربردی برای کاربردهای خیلی خاص استفاده می‌شود. Chinga Carrasco می‌گوید: علاوه بر این مصرف مواد کاهش می‌یابد که یک مزیت بزرگ از نقطه نظر اقتصادی و زیست‌محیطی است. او همچنین اضافه کرد: بایوکامپوزیت‌های زیستی تجدیدپذیر هستند و اگر ضروری باشد می‌تواند زیست‌تخریب‌پذیر باشد. این در مقایسه با سایر پلیمرهای فسیلی پر شده سودمند است. این منطقه در حال رشد توسعه مواد پایدار است که همچنین با اقتصاد زیستی و چرخه‌ای مطابق است.

دستاوردهای قالب‌گیری

فراتر از چاپ سه بعدی، پروژه RISE PFI’s BioComp در حال توسعه مواد بایوکامپوزیت جدید و پایدار است تا جای‌گزینی برای پلاستیک‌های پایه نفتی (فسیلی) در بخش قالب‌گیری تزریقی باشد. این پروژه تا حدی توسط شورای تحقیقات نروژ تأمین می‌شود؛ همکاری بین RISE PFI و شرکت‌های alloc نروژی (یک شرکت محصولات ساختمانی)، Norske Skog Saugbrugs (تولیدکننده بایوکامپوزیت) و Plasto (قالب‌گیر تزریقی) است. این پروژه در سال ۲۰۲۱ آغاز شده است و شرکا می‌گویند پیشرفت چشم‌گیری داشته‌اند. مطابق گفته‌ Dag Molteberg مدیر ارشد و توسعه Norske Skog Saugbrugs ساخت کارخانه جدید ارائه بایوکامپوزیت را به پایان رسانده است که دارای خروجی ۱۲۰ کیلوگرم بر ساعت در حداکثر سرعت (حدود ۱ تن در یک روز کاری عادی) است. این شرکت تأسیسات بزرگ مکانیکی حرارتی خمیر کاغذ (TMP) برای تولید کاغذ و بایوکامپوزیت با الیاف TMP از چوب صنوبر را تأمین خواهد کرد. یک قسمت از کارخانه برای خشک کردن، آماده سازی و گرانول سازی الیاف چوب استفاده می‌شود. بخش دوم سیستم ترکیب را در خود جای داده است که الیاف خرد شده (گرانول شده) با پلاستیک‌ها و افزودنی‌ها جهت تولید گرانول‌های بایوکامپوزیتی (با نام تجاری Cebico) ترکیب می‌شوند. سیستم اختلاط شامل مناطق گاززدایی جهت حذف رطوبت و ویژگی کنترل دما به خوبی تنظیم شده است. Molteberg می‌گوید: خط قابلیت خرد کردن هوا خشک شده و در زیر آب را دارد. قطر آمیزه‌های گرانولی بین ۳ تا ۵ میلی‌متر و طول آن‌ها بین ۴ تا ۷ میلی‌متر است. Saugbrugs چندین تن از این مواد را از زمان تولید آزمایشی در دسامبر سال گذشته تولید کرده است. همچنین اضافه می‌کند: آزمایش مواد نشان می‌دهد که الیاف به خوبی در ماتریس پراکنده شده اند. استحکام کششی مطلوب و سختی خمشی بالا می‌دهد. پایداری ابعادی حرارتی از PE و PP پر نشده بهتر است و نتایج، جذب آب بسیار کم حتی در آب جوش را نشان می‌دهد. پارامترهای جریان مذاب نیز برای قالب‌گیری تزریقی قابل قبول هستند. Molteberg می‌گوید: مقدار الیاف در کامپوزیت‌ها می‌توانند بین ۲۰ تا ۶۰% وزنی متغیر باشند، اما به طور معمول بین ۳۰ تا ۴۰% است. جز ترموپلاستیک شامل PE یا PP خام و بازیافت شده و در این پروژه استفاده از مواد ترموپلاستیک مبتنی بر زیستی و زیست‌تخریب‌پذیر بررسی خواهد شد. Plasto قالب‌گیر تزریقی، گرانول‌های بایوکامپوزیتی را با استفاده از تجهیزات قالب‌گیری تزریقی خوکار با سرعت بالا فرآیند می‌کند. Runar stenerud مدیر پروژه Plasto می‌گوید: خط تولید برای تولید روزانه به صورت ۲۴ ساعته و بدون نیاز به اپراتور پیکربندی شده است و خروجی بالا و پایدار اجزای بایوکامپوزیت تولید شده را تضمین خواهد کرد. Stenerud  بیان کرد: همکاری با  RISE PFI در پروژه BioComp بینش ارزشمندی از خواص مکانیکی و فرآیندی مرتبط با خواص و همچنین چگونگی طراحی برای جابه‌جایی بهینه در پایان طول عمر را به ما اعطا کرد. درگیری توسعه مراحل اولیه مواد جدید نیز این فرصت را به ما می‌دهد تا بر مشخصات مواد تأثیر بگذاریم تا بهترین سازگاری ممکن را با محصول در دست توسعه و فرآیند تولیدمان تضمین کنیم. هدف شرکت محصولات ساختمانی Alloc بازاریابی محصولات امسال پروژه Biocomp است. Leif Kåre Hindersland مدیر تحقیق و توسعه شرکت می‌گوید: ما از تجربه کردن خرسندیم که تیم تحقیق و توسعه Rise PFI انجام داد که در این راستا می‌تواند برای بهبود عملیات ما منتقل شود و در تولید پنل و کف‌پوش‌ دیواری با کیفیت و خلاقانه کمک کند.

لیگنین کاربردی

شرکت فنلاندی UPM Biofore دارای چندین کسب و کار الیاف و زیست توده است و UPM Formi آمیزه پلاستیکی تقویت شده با الیاف سلولز برای قالب‌گیری تزریقی و چاپ سه‌بعدی را برای چندین سال تولید کرده است. این شرکت اکنون در حال توسعه یک پرکننده دیگر و در حال ساخت یک پالایشگاه زیستی در Leuna آلمان است که چوب راش را می‌گیرد و آن را به قندها هیدرولیز می‌کند که برای تولید بیومنواتیلن‌گلایکول و بیومنوپروپیلن گلایکول و لیگنین مناسب برای تبدیل به پرکننده‌های کاربردی تجدیدپذیر (RFF) استفاده می‌شود. یکی از اهداف RFF جای‌گزینی دوده یا سیلیکا رسوبی است. Christian Hübsch مدیر فروش و بازاریابی UPM Biochemicals (گروه UPM مستقر در آلمان) می‌گوید: در ترموپلاستیک و ترموست الاستومرها، RFF ممکن است دارای دو استفاده مختلف باشد. یک کاربرد برای RFF، یک رنگ‌دانه سیاه جای‌گزین دوده است. مورد دوم استفاده از درصد بالای RFF جهت افزایش محتوای تجدیدپذیر و کاهش ردپای کربن است. در حالی که ویژگی‌های مکانیکی قابل قبول حفظ شود. Hübsch می‌گوید: تا الان ما ترکیبات با ۳۰-۴۰% درصد وزنی RFF در PE، PP ، PBAT و… ساخته‌ایم. در حالی که RFF اغلب برای جای‌گزینی پلیمر در فرمولاسیون آمیزه استفاده می‌شود، می‌توان برای جای‌گزینی پرکننده‌های مرسوم جهت سبک‌سازی استفاده کرد. Hübsch می‌گوید: با دانسیته تنها ۱/۳ گرم بر سانتی متر مکعب، RFF 50 تا ۶۰% از بسیاری پرکننده‌های سفید سبک‌تر است. همچنین اضافه می‌کند: RFF با ترکیبات مبتنی بر سلولز یا کامپوزیت‌های چوب-پلاستیک متفاوت است. آمیزه‌های ترموپلاستیک با درصد بالای RFF نشان دهنده یک کلاس جدید از مواد با پتانسیل عظیم آینده است. RFF اساساً بدون ترکیبات آلی فرار (VOC) است و ما در حال جمع‌آوری داده‌های لازم برای صدور گواهینامه تماس با غذا و آب آشامیدنی هستیم. UPM مرکز کاربرد را در سایت Leuna بازگشایی و آزمایش، توسعه و همچنین خدمات آمیزه‌سازی محصول را آغاز کرده است. Hübsch می‌گوید: ما شرکت خود را به عنوان یک شریک مستربچ و آمیزه‌ساز می‌بینیم. با این حال ما توسعه آمیزه‌های خودمان را انجام می‌دهیم. ما هر دو را برای مشتری خاص، برنامه‌های بهینه‌سازی ترکیب و مطالعات بنیادین دیگر به صورت موازی برای طیف گسترده‌ای از پلیمرها و کاربردها اجرا می‌کنیم. انتظار می‌رود پالایشگاه زیستی صنعتی در اواخر سال ۲۰۲۳ راه اندازی شود و اولین مقادیر تجاری در اوایل سال ۲۰۲۴ در دسترس خواهد بود. در حال حاضر نمونه‌های مواد تا چند صد کیلوگرم توسط شرکای منتخب برای اهداف توسعه و تأیید آمیزه در حال آزمایش هستند. UPM می‌گوید که  BioMotion RFF دارای CO2 خنثی است و انتظار می‌رود در مقیاس صنعتی CO2 منفی باشد. بر اساس آنالیز چرخه عمر تأیید شده شخص ثالث مطابق گفته‌ Barbara Gall مدیر توسعه بازرگانی، پرکننده عمل‌کردی تجدیدپذیر در UPM Biochemicals فیلر بیش از ۹۴% محتوای کربن تجدیدپذیر خواهد داشت و خلوص بالا خواهد بود (VOC و محتوای گوگرد کم). Nymax Bio خط جدیدی از ترکیبات PA Avient است که دارای ۱۶ تا ۴۷% پرکننده از منابع گیاهی تجدیدپذیر مانند ذرت، کاه و گندم است. پایداری یک اولویت بالا برای برندهای مصرف کننده است.  Matt Mitchel بازاریاب جهانی مواد مهندسی تخصصی شرکت می‌گوید: اکثر ابتکارات در راستای محصولات با سازگاری بیش‌تر با محیط زیست ساخته شده‌اند. Avient می‌گوید: در مقایسه با جای‌گزین‌های پلی‌آمید ۶۶ تقویت شده با الیاف شیشه مرسوم، گریدهای مشتقات زیستی، تابیدگی کم‌تر همراه با سطح ظاهری و رنگ‌پذیری مطلوب ارائه می‌کنند. فرمولاسیون‌های با جذب کم آب به نمایش پایداری ابعادی بسیار خوب و حفظ ویژگی پس از شرطی‌سازی گفته می‌شود. انتظار می‌رود گریدهای جدید، کاربرد در خودروسازی، صنعتی و ساختمانی پیدا کنند و می‌توان آن را با قالب‌گیری تزریقی و اکستروژن فرآیند کرد. آن‌ها همچنین می‌توانند برای ارائه خواص کاربردی ویژه مانند جوشکاری لیزری یا تأخیر در شعله به صورت سفارشی فرموله شوند. مواد Nymax Bio در آسیا تولید می‌شوند اما در سطح جهانی در دسترس هستند.

کنف مناسب

مقررات در ایالات متحده در سال ۲۰۱۸ تغییر کرد تا اجازه رشد کنف را دهد. از آن زمان شرکت بیوتکنولوژی صنایع Heartland کار کرده است تا یک زنجیره تأمین کنف صنعتی قابل اعتماد ایجاد کند تا افزودنی‌های کربن منفی را برای پلاستیک‌ها فراهم کند. مطابق گفته‌ John ElY CMO در Heartland ریسک‌زدایی و مقیاس‌پذیری دو متغیر کلیدی در خلق زنجیره تأمین قابل اعتماد هستند. ما رویه‌های عملیاتی ساده خلق کردیم که هر کشاورز برای داشتن محصول موفق (مثل ذرت و سویا) می‌تواند از آن پیروی کند. این مهم‌ترین پی‌گیری برای کاهش خطر بانک‌ها و آژانس‌های بیمه است. به علاوه که ما در کنار کشاورزان در مناطق مختلف آمریکا برای بهبود انعطاف‌پذیری یک محصول در مورد حوادث موجود آب و هوایی کار می‌کنیم. Ely می‌گوید:  اولین برداشت عمده محصول ایالات متحده امسال پیش‌بینی می‌شود و انتظار دارد که قراردادهای تجاری را در سه ماهه‌ چهارم ۲۰۲۲ برای افزودنی‌های کنف ببیند. Heartland  در ماه ژانویه یک توافق توسعه مشترک با Ravago آمریکا را برای مهندسی کردن افزودنی‌های کنف برای کاربردهای آمیزه‌های پلیمری اعلام کرد. کامپاندهای پلاستیک پرشده با کنف گفته می‌شود که سبک‌تر، ارزان‌تر، پایدارتر با خواص گرمایی و آکوستیک افزایش یافته هستند. Ravago که بازیافت‌کننده، آمیزه‌ساز و توزیع‌کننده است Heartland را در فرمولاسیون افزودنی‌ها راهنمایی می‌کند که نیازی به ابزارآلات مجدد برای آمیزه‌ساز و قالب‌گیرها نخواهد داشت. کنترل کیفیت الیاف کنف heartland اندازه استوار، رطوبت و ناحیه سطح را فراهم می‌کند در حالی که فرآیند مهندسی اختصاصی فرآیند و پیوند با پلاستیک را بهبود می‌بخشد. Ely می‌گوید: هدف ارائه جای‌گزینی ۱:۱ به تولیدکنندگان است که هزینه کم‌تر همراه با دیگر ویژگی‌های کاربردی است که یکسان نگه داشته شده است. به عنوان مثال این شرکت در حال کار بر روی کنف پرشده به عنوان جای‌گزینی برای ترکیبات PP حاوی ۲۰% تالک است. الیاف نیز در پلیمرهایی از قبیل PE، PVC، ABS و PET ارزیابی شده است. به گفته‌ Ravago آمیزه PP حاوی ۲۰% کنف استحکام کششی تقریباً یکسانی با PP حاوی ۲۰% تالک خواهد داشت. به علاوه دارای ۲۰% مدول خمشی کم‌تر و ۲۰% مقاومت ضربه آیزود بیش‌تر است. Chuck taylor مدیر فنی و مدیر کسب و کار Ravago Manufacturing Americas می‌گوید: همچنین کاهش وزن قطعه تا حدود ۲۰% را ارائه می‌دهد. Taylor می‌گوید: جای‌گزینی الیاف شیشه با الیاف کنف مطلوب است اما هنوز ممکن نیست. ما باید یک شیمی با دوام جهت اصلاح کنف ایجاد کنیم تا به رزین برای ایجاد تقویت چسبانده شود. او گفت تا آن زمان کنف به عنوان پرکننده عمل خواهد کرد. با این حال مطابق گفته‌ او مشتریان به طور فزاینده‌ای درخواست محصولات تجدیدپذیر و پایدار را می‌کنند و به نظر می‌رسد درک کنند که این راه حل‌ها ممکن است افزایش هزینه را به دنبال داشته باشد. او اضافه می‌کند: این تمایل به پرداخت برای پایداری به طور چشم‌گیری با آنچه که در گذشته دیده‌ایم متفاوت است.

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

مواد پرکننده (Fillers)

پرکننده معمولاً به افزودنی‌های جامدی گفته می‌شود که خواص فیزیکی پلیمر را اصلاح می‌کنند. تعدادی از انواع پرکن‌ها معمولاً در صنعت پلیمر شناخته شده اند.

Untitled

مواد پرکننده ذره‌ای

پرکننده‌های ذره ای به دو نوع پرکن‌های خنثی و پرکن‌های تقویتی تقسیم می‌شوند. پرکننده‌هایی که معمولاً به دلیل کاهش هزینه به آمیزه‌های پلیمری افزوده می‌شود را اصطلاحاً پرکننده خنثی می‌نامند و از میان آن‌ها می‌توان به کربنات کلسیم، خاک چینی، تالک و سولفات باریم اشاره کرد.

در کاربردهای عادی، مواد پرکننده باید در مایعی که پلیمر با آن تماس دراد، نامحلول باشند. خواص و شرایط ماده پرکننده می‌توانند خواص مختلفی را در آمیزه پلیمری حاصل ایجاد کند. تفاوت‌های زیر در این خصوص قابل ملاحظه اند:

  • متوسط اندازه و منحنی توزیع اندازه ذرات ماده پرکننده
  • شکل و تخلخل ذرات
  • طبیعت شیمیایی سطح ذره
  • ناخالصی‌ها و یون‌های فلزی همراه با ماده پرکننده

در استفاده از مواد پرکننده، معمولاً مشاهده می‌شود که هر چه اندازه ذرات ریزتر باشد، خواصی نظیر استحکام کششی، مدول و سختی، بالاتر خواهند بود. این پدیده به عنوان عامل تقویت شناخته می‌شود.

شکل ذره نیز مؤثر است. مثلاً ذرات صفحه‌ای نظیر خاک چینی، در طول فرآیند جهت‌گیری می‌کنند. در مقابل، ذرات دیگر سطحی ناهموار را فراهم می‌سازند و به سختی با پلیمر اصلی ممزوج می‌شوند. برخی از دیگر ذرات، متخلخل بوده و با جذب افزودنی های دیگر، آن‌ها را بی‌تأثیر می‌سازند.

طبیعت شیمیایی سطح نیز می‌تواند مؤثر باشد. به همین منظور برای اصلاح خاصیت خیس‌کنندگی و امتزاج‌پذیری با پلیمرها، معمولاً مواد پرکننده معدنی را آماده‌سازی می‌کنند. مثلاً کربنات کلسیم با اسید استئاریک آماده‌سازی می‌شود.

ناخالصی‌های پرکننده معدنی معمولاً اثراتی جدی و منفی بر پلیمر دارند. ذرات درشت ناخالصی، منجر به ایجاد نقاط ضعیف در پلیمرهای تهیه شده می‌شوند. مقادیر ناچیز مس، منگنز و آهن، بر پایداری اکسایشی پلیمر اثر منفی دارند.

پرکننده‌های ذره‌ای تقویتی، بسته به نوع و مقدار خود باعث افزایش استحکام و مقاومت پلیمر می‌شوند. ساز و کار تقویت به این صورت است که دانه های پرکن، زنجیره‌های پلیمر را بر روی خود نگه می‌دارد و اگر نیرویی به ماده پلیمری اعمال شود، مقداری از تنش بر روی ماده تقویت‌کننده و مقداری تیز روی ماده پلیمری توزیع می‌شود. مثلاً دوده باعث افزایش استحکام کششی PVC و افزایش در مدول، مقاوت پارگی و مقاومت سایشی لاستیکی نظیر SBR می‌شود.

در این آمیزه‌ها، اندازه‌ و ذرات و میزان افزایش تقویت‌کننده، عواملی مؤثر بوده و بعضاً ممکن است به جای تقویت خواص استحکامی، موجب ضعف این خواص نیز شوند. از پرکننده‌های ذره‌ای تقویتی می‌توان به دوده، سیلیس، هیدروکسید آلومینیوم، اکسید روی و سیلیکات کلسیم اشاره کرد.

پرکننده‌های لاستیکی

از پرکننده‌های لاستیکی، اغلب به منظور چقرمگی در ترموپلاستیک‌های بی‌شکل استفاده می‌شود. این مواد، به دو نوع واکنش‌پذیر و واکنش‌ناپذیر تقسیم شده‌اند. از نمونه‌های شناخته شده می‌توان به استفاده از SBR و پلی‌بوتادی‌ان در پلی‌استایرن، لاستیک‌های بوتادی‌ان‌آکریلونیتریل در PVC و لاستیک‌های اتیلن‌پروپیلن اشاره کرد.

رزین‌ها (پرکننده‌های پلاستیکی)

در صنعت لاستیک، اغلب از رزین های مصنوعی (پلاستیک‌‌ها) به عنوان پرکنندخ استفاده می‌شود. به طور نمونه، رزین‌های بوتادی‌ان-استایرن حاوی دست کم ۵۰% استایرن است که به منظور تولید آمیزه‌هایی برای تولید کفی کفش، با لاستیک آلیاژ می‌شوند. رزین‌های فنلی که در دمای فرآیند از ویسکوزیته کمی برخوردارند، باعث افزایش جریان و فرآیندپذیری آمیزه‌های لاستیکی می‌شوند و هم‌زمان در حین واکنش ولکانیزاسیون لاستیک شبکه‌ای‌شده، محصولی نسبتاً سخت را به دست می‌دهند.

پرکننده‌های لیفی

استفاده از پرکننده‌های لیفی نظیر خاک اره، خرده پنبه، الیاف کوتاه آلی مصنوعی نظیر الیاف نایلون می‌توانند استحکام ضربه‌ای و نیز سختی و چقرمگی آمیزه‌های قالب‌گیری شده را بهبود بخشند.

الیاف معدنی نظیر پنبه نسوز و الیاف شیشه نیز در ترمپلاستیک‌ها و ترموست‌ها در جایی که به ترتیب مقاومت گرمایی و استحکام مد نظر باشد، مورد استفاده قرار می‌گیرند. پرکننده‌های لیفی، اغلب به شکل لایه‌ای قرار داده می‌شوند. الیاف مصرفی در مقایسه با پلاستیک‌هایی که در ان قرار می‌گیرند، از مدول بالاتری برخوردارند، به طوری که وقتی سازه‌ تولید شده با الیاف کشیده می‌شود، قسمت اعظم تنش وارده توسط لیف گرفته می‌شود. این امر منجر به افزایش استحکام و مدول در مقایسه با پلاستیک اصلاح نشده می‌شود.

از جمله معایب استفاده از پرکننده‌های لیفی این است که به شفافیت پلیمر لطمه زده و ممکن است ویسکوزیته پلیمر را در فرآیند افزایش دهند. هر چه الیاف طویل‌تر باشند، ویسکوزیته بیش‌تر شده، اما توانمندی کامپوزیت نیز تقویت می‌شود.

استحکام ایجاد شده در کامپوزیت‌های پلیمری الیاف‌دار به عوامل زیر بستگی دارد:

  • غلظت الیاف در شبکه پلیمر
  • جهت آرایش الیاف
  • نسبت طول به قطر الیاف مورد استفاده
  • سازگاری الیاف با پلیمر
  • میزان استحکام و مدول الیاف نسبت به پلیمر اصلی
  • استحکام پلیمر پایه

از جمله مهم‌ترین الیاف پرکننده در پلاستیک‌ها، می‌توان به انواع الیاف شیشه، الیاف پنبه، الیاف پلی‌استر، الیاف پلی‌وینیل‌الکل، الیاف پلی‌اکریلونیتریل و الیاف چتایی اشاره کرد. از دیگر پرکننده‌های لیفی، می‌توان به پرکننده‌های الیاف کربن/گرانیت اشاره کرد که کاربرد آن برای ساخت کامپوزیت‌هایی با استحکام بالا و وزن کم در صنایع است.

پرکننده‌ها و تقویت‌کننده‌ها

پرکننده‌ها مواد جامد نسبتاً ارزان هستند که در مقادیر نسبتاً زیاد به پلیمر جهت تنظیم حجم، وزن، هزینه، سطح، رنگ رفتار فرآورش (رئولوژی)، جمع‌شدگی، ضریب انبساط، رسانایی، نفوذپذیری و خواص مکانیکی افزوده می‌شوند.

آن‌ها می‌توانند به طور کلی به پرکننده‌های غیر فعال یا بسط‌دهنده ‌‌و پرکننده‌های فعال یا عاملی یا تقویت‌کننده تقسیم‌بندی شوند.

پرکننده‌های غیر فعال به طور همده برای کاهش هزینه به کار می‌روند، در حالی که پرکننده‌های فعال تغییرات ویژه در خواص ایجاد می‌کنند به طوری که ترکیب نیازهای مور تقاضای خود را برآورده می‌کند؛ اما درواقعیت، پرکننده‌ای وجود ندارد که کاملاً غیر فعال باشد و فقط هزینه‌ها را کاهش دهد.

تعدادی از پرکننده‌های تقویت‌کننده از طریق تشکیل پیوندهای شیمیایی با پلیمر عمل می‌کند. دیگر محصولات خواص مکانیکی را با افزایش حجم افزایش می‌دهند. آن‌ها به زنجیرهای پلیمرهای اطراف متصل می‌شوند، در حالی که تحرک زنجیره‌های پلیمر را کاهش و آرایش‌یافتگی پلیمر در سطح پرکننده افزایش می‌دهد.

تحرک کاهش یافته منجر به دمای انتقال شیشه‌ای بالاتر می‌شود. اثر دیگری که برخی پرکننده‌ها دارند بر روی تبلور با تقویت هسته‌گذاری است.

شکل و اندازه ذارت و نیز خصوصیات مشتق شده مانند سطح ویژه و فشردگی ذرات عمده‌ترین عوامل تأثیرگذار بر روی ویژگی‌های مکانیکی ترکیب است. علاوه بر این تخلخل و تمایل به کلوخه شدن (پیوند ضعیف) و/یا تجمع می‌تواند اثرات مهمی روی هر دو رفتار فرآورش و خواص مکانیکی داشته باشد. چگالی واقعی پرکننده به موفولوژی ترکیب‌‌بندی شیمیایی بستگی دارد.

پرکننده‌های سبک، نظیر کره‌های شیشه‌ای توخالی، چگالی ترکیب را کاهش می‌دهند، در حالی که پرکننده‌های سنگین آن را افزایش می‌دهند و می‌توانند برای مثال برای کاربردهای عایق‌سازی صدا به کار روند. اکثر پرکننده‌های تجاری چگالی بین ۵/۴-۵/۱ دارند. چون اکثر پرکننده‌ها به شکل پودر استفاده می‌شوند، چگالی توده یا چگالی شُل (loose density) به طور قابل توجه‌ای بر نحوه کار و خوراک‌دهی در حین فرآورش مؤثر است.

پرکننده‌های ریز می‌‌توانند چگالی بالک زیر (gr/cm3) 2/0 به دلیل گیرانداختن ها و بارهای الکتریکی ساکن داشته باشند، بنابراین در حالی که استفاده از آن‌ها در تجهیزات فرآورش مرسوم را محدود می‌کند.

این مشکلات را می‌توان به وسیله خوراک‌دهی چند قسمتی، گاز زدایی بهتر، و آماده‌سازی سطحی و/یا متراکم تر کردن پرکننده‌ها تا حدودی حل کرد.

مساحت سطح ویژه به این صورت تعریف می‌شود مجموع مساحت سطح به واحد وزن پرکننده. پرکاربردترین روش استفاده شده تعینن سطح ویژه استفاده از روش جذب نیتروژن BET است. روش ساده برای حصول ارقام مربوط به مساحت سطح ویژه تعیین جذب روغن است.

نتیجه به صورت مقدار سیال به میلی‌لیتر به ازای گرم فیلر داده می‌شود و تخمینی تقریبی از مقدار حداقل پلیمر مورد نیاز برای پراکنش فیلر ارائه می‌دهد.

خواص دیگر پرکننده‌ها و تقویت‌کننده ها که موثر است بر روی خواص ویژه ترکیبات هستند:

خواص نوری

سختی و سایندگی

خواص مغناطیسی و الکتریکی

حلالیت اسید

افت حرارتی loss on ignition

pH

میزان رطوبت

خصوصیات تقویت‌کنندگی پرکننده را می‌توان از طریق عوامل اتصال‌دهند افزایش داد.

عوامل اتصال‌دهنده، معمولاً سیلان‌ها و تیتانات‌ها پیوند بین سطحی میان پرکننده و رزین را بهبود می‌دهند.

آن‌ها مولکول‌ه‌ای دو عمل‌کردی هستند، که در آن یک انتهای آن با مواد قطبی واکنش می‌دهد، مواد غیر آلی، در حالی که دیگری با مواد آلی، مواد غیر قطبی، واکنش می‌دهد. آن‌ها به عنوان پل‌هایی میان پرکننده و رزین عمل می‌کنند. عوامل اتصال‌دهنده موجود در بازار دارای گروه‌های مختلف عمل‌کردی متناسب برای رزین خاص هستند. اثر نهایی، چسبندگی بهبودیافته میان پرکننده و پلیمر است که منتج به افزایش خواص مکانیکی، نظیر استحکام کششی، مدول خمشی، استجکام ضربه و دمای انحراف گرمایی می‌شود.

الیاف شیشه (رشته خرد شده) تقویت کننده‌ای است که اغلب در ترموپلاستیک استفاده می‌شود. آن‌ها مقرون به صرفه هستند و می‌توان طیف وسیعی از خصوصیات فیزیکی را برای تعداد زیادی از کاربردها به دست آورد. تقویت کننده‌های الیاف شیشه رشته‌هایی از تارها هستند که به قطرهای مختلف بین ۳٫۸ تا ۱۸ میلی‌متر کشیده می‌شوند. تعداد تارها در هر رشته، آرایش رشته و نسبت طول به وزن الیاف می‌تواند بسته به خصوصیات مورد نظر متنوع باشد. رشته های خرد شده و ممتد در قالب‌گیری تزریقی در بارگذاری‌های ۳۰%-۵% استفاده می‌شوند. نمد می‌تواند از رشته‌های ممتد و خردشده ساخته می‌شود. رزین‌های تقویت شده با الیاف شیشه استحکام کششی، سفتی بالا و مدول خمشی، مقاومت خزشی بالا، مقاومت ضربه و HDT بالا دارند. علاوه بر این ، آنها از ثبات ابعادی عالی و CLTE پایین برخوردار هستند. بازده تقویت الیاف شیشه با استفاده از عوامل اتصال‌دهنده (به عنوان مثال، سیلان‌ها) می‌تواند ارتقای بیش‌تری پیدا کند.

به دلیل این که الیاف شیشه در جهت جریان در حین قالب‌گیری تزریقی آرایش می‌یابند، جمع شدگی تا حد زیادی در جریان کاهش می‌یابد. در جهت عرضی، کاهش جمع‌شدگی خیلی زیاد نیست. معایب الیاف شیشه تاب‌ برداشتن، مقاومت کم در خط جوش و کیفیت پایین سطح هستند.

به دلیل ساینده بودن آن‌ها، آن‌ها می‌توانند به ماشین‌الات و ابزار آسیب برسانند. پوشش‌های سخت شده بر روی محفظه‌ها (barrels)، پیج‌ها (screws) و ابزار می‌توان ساییدگی را به حداقل رساند.

الیاف کربن و الیاف آرامید از ویژگی‌های تقویت‌کننده استثنایی برخوردار هستند، اما به دلیل هزینه بالای آن‌ها فقط در کاربردهای تخصصی مانند هوافضا، دریایی، نظامی و پزشکی کاربرد دارند.

پرکننده‌های نانو به عنوان پرکننده‌هایی با اندازه ذرات در محدوده ۱۰۰-۱ نانومتر تعریف می‌شوند.

چنین پرکننده‌هایی، برای مثال، دوده، سیلیکا سنتزی، کربنات کلسیم رسوبی، برای مدت‌های طولانی پیرامون ما وجود داشته است. اما ذرات اولیه آن‌ها، ذرات ثانویه بزرگ‌تر و پایدارتر به واسطه انباشتگی تشکیل می‌دهند، بنابراین در نهایت آن‌ها نمی‌توانند به عنوان نلنوپرکننده طبقه‌بندی شوند.

اخیراً نانوپرکننده‌های مختلف، نظیر نانوکلی‌ها (montmorrilonite, smectite) و نانوویسکرهای سوزنی‌شکل به صورت تجاری در دسترس قرار گرفته اند.

نانورس‌ها ورقه‌ای ‌(Exfoliation) می‌شوند (به لایه‌های مجزا جدا می‌شوند) و ذرات اولیه تقویت کننده با نسبت‌های بسیار بالا (بیش‌تر از ۲۰۰) تشکیل می‌شوند.

لایه‌ها توسط آماده‌سازی سطح که بین لایه‌ای (intercalation) نامیده می‌شود، از طریق ترکیبات از جمله گروه‌های عاملی فسفونیوم یا آمونیوم افزایش می‌یابند.

این سطح را از آب‌دوستی به آلی‌دوستی تبدیل می‌کند.

مزایای این قبیل پرکننده‌ها این است که آن‌ها خواص مکانیکی خیبی خوب در بارگذاری‌های کم، مقاومت در برابر خراش، خواص ممانعتی بالاتر، خواص مقاومت در برابر آتش افزایش یافته، و عملکرد اعوجاج گرمایی بهبودیافته هنگام مقایسه با پلیمر خالص ایجاد می‌کند.

عمده‌تربن کاربرد فعلی فیلم‌های بسته‌بدی و ظروف سخت، قطعات صنعتی و خودرویی هستند.

پرکننده‌ها مواد جامد نسبتاً ارزان هستند که در مقادیر نسبتاً زیاد به پلیمر جهت تنظیم حجم، وزن، هزینه، سطح، رنگ رفتار فرآورش (رئولوژی)، جمع‌شدگی، ضریب انبساط، رسانایی، نفوذپذیری و خواص مکانیکی افزوده می‌شوند.

آن‌ها می‌توانند به طور کلی به پرکننده‌های غیر فعال یا بسط‌دهنده ‌‌و پرکننده‌های فعال یا عاملی یا تقویت‌کننده تقسیم‌بندی شوند.

پرکننده‌های غیر فعال به طور همده برای کاهش هزینه به کار می‌روند، در حالی که پرکننده‌های فعال تغییرات ویژه در خواص ایجاد می‌کنند به طوری که ترکیب نیازهای مور تقاضای خود را برآورده می‌کند؛ اما درواقعیت، پرکننده‌ای وجود ندارد که کاملاً غیر فعال باشد و فقط هزینه‌ها را کاهش دهد.

تعدادی از پرکننده‌های تقویت کننده از طریق تشکیل پیوندهای شیمیایی با پلیمر عمل می‌کند.

پرکننده‌هایی که معمولاً در پلیمرهای ترموپلاستیک استفاده می‌شوند

پرکننده‌های مکعبی و کره‌ای

کربنات کلسیم طبیعی که بسته به منبع مواد اولیه خام به صورت گچ، سنگ آهک یا سنگ مرمر موجود است.

کربنات کلسیم طبیعی بدون تغییر چشم‌گیر در خصوصیاتش، هزینه یک ترکیب را کاهش می‌دهد.

کربنات کلسیم رسوبی معمولاً از سنگ آهک کلسینه شده (CaO) و دی‌اکسید کربن تهیه می‌شود. اغب سطحی که آماده سازی می‌شود با اسیدهای چرب، ارائه می‌شود.

به دلیل سطح ویژه بالایش (m2/gr20-40) تأثیر عمده روی خواص رئولوژیکی و خواص جذب دارد (پایدارکننده‌ها و نرم‌کننده‌ها). سولفات باریم به عنوان ماده معدنی طبیعی (باریت) و هم به عنوان تولیدات سنتزی (blanc fixe) موجود است.

آن بالاترین وزن مخصوص را در میان پرکننده‌های تجاری دارد، بی‌اثر، بسیار روشن و به آسانی پراکنده می‌شود.

سولفات باریم به طور گسترده‌‌ای برای کاربردهای عایق صوتی (فوم‌ها، لوله‌کشی)، در پشت فرش، کاشی کف، وسایل ورزشی، روکش ترمز و کلاچ، در محافظت در برابر اشعه و به عنوان رنگدانه سفید استفاده می‌شود.

دانه‌های شیشه و سرامیک به طور گسترده‌ای در سامانه‌های رزینی استفاده می‌شود. آن‌ها اغلب توسط سیلان برای افزایش پیوند میان رزین و ذارت آماده‌سازی می‌شوند یا توسط فلزات (نقره، مس) پوشش داده می‌شوند و به عنوان پرکننده رسانا مورد استفاده قرار می‌گیرند. پرکننده‌ای کروی مقاومت فشاری و پارگی، پایداری ابعادی، مقاومت در برابر خراش، و سختی ترکیبات را ایجاد می‌کنند.

دانه‌های شیشه‌ای توخالی چگالی ویژه ترکیب را کاهش می‌دهند و در فوم‌ها، فوم‌های سنتزی و در قطعات خودرو استفاده می‌شوند.

سیلیکای سنتزی اساساً دی‌اکسید سیلیکون آمورف با ذرات اولیه که محدوده قطر ۱۰۰-۱۰ نانومتر را دارند و انبوهه‌ها (بخش‌های ثانویه) را با اندازه ۱۰-۱ نانومتر را تشکیل می‌دهند.

محصولات سیلیکا بعد از فرآیند تولیدشان به صورت زیر نام‌گذاری می‌شوند:

Fumed، fused، precipitated، و مساحت سطح آن ها، بع فرایند استفاده شده بستگی دارد. می‌تواند متنوع از m2/g 800-50 باشد. سیلیکای سنتزی به عنوان پرکننده‌های نیمه‌تقویت‌کننده در ترموپلاستیک‌ها، الاستومرها، به عنوان افزودنی ضد انسداد برای فیلم‌ها، به عنوان تنظیم‌کننده‌های رئولوژی، و به عنوان عوامل مات‌کننده مورد استفاده قرار می‌گیرند.

سیلیکاهای سنتزی برای تقویت خواص تقویت کنندگی‌شان، توسط عوامل اتصال آماده‌سازی می‌شوند. به طور خلاصه، سیلیکاها عمل‌کردهای زیر را در ترموپلاستیک انجام می‌دهند.

کاهش جمع‌شدگی و تشکیل ترک، تقویت‌کننده، ممانعت ار انسداد فیلم، بهبود پایداری ابعادی تحت حرارت، کاهش ضریب انسبساط خطی، بهبود خواص الکتریکی، افزایش سفتی، کاهش تورم دای، تأثیردهنده رفتار رئولوژیکی.

از کربن سیاه عمدتاً به عنوان تقویت‌کننده در الاستومرها استفاده می‌شود. استفاده آن در ترموپلاستیک‌ها به رنگ‌دانه، محافظت در برابر uv، و رسانایی محدود می‌شود.

پرکننده‌های صفحه‌ای

تالک نرم‌ترین ماده معدنی با Mohs hardness دارای ۱، از لحاظ شیمیایی هیدرات سیلیکات منیزیم است. حداکثر تالک به ترکیبات پلی‌پروپیلن برای صنعت خودرو می‌رود.

تالک به طور مثبتی بر بسیاری از خصوصیات از جمله HDT، مقاومت در برابر خزش، جمع‌شدگی، و ضریب انبساط حرارتی خطی (CLTE) تأثیر می‌گذارد. میکا شبیه تالک یک سیلیکات ورقه‌ای با ساختار صفحه‌ای عالی است.  مهم‌ترین انواع میکا muscovite  و  phlogopiteهستند. هر دو نوع نسبت منظر ۴۰-۲۰ دارند و در ترموپلاستیک‌ها جهت بهبود سختی، ثبات ابعادی و HDT به کار می‌رود.

میکا همچنینن خواص الکتریکی خوبی نشان می‌دهد و مقاوم در برابر اسید است. Muscovite سفید تا تقریباً بی‌رنگ به نظر می‌رسد، در حالی phlogopite یک رنگ ذاتی قهوه‌ای طلایی دارد. میکا سخت پراکنده می‌شود، بنابراین، سطحش توسط آمینوسیلان‌ها، واکس‌ها و یا آمینواستات‌ها آماده‌سازی می‌شود. از دیگر معایب میکا مقاومت ضعیف خط جوشش است.

کائولین و کِلی، انواع سیلیکات‌های آمینه شده، در درجه ای مختلف خلوص وجود دارد.

این ماده معدنی ساختار کریستالی ۶ ضلعی، ورق مانند با نسبت ابعاد حداکثر ۱۰ دارد. کم‌رنگ است و مقاومت شیمیایی عالی و خواص الکتریکی خوب دارد. اندازه متوسط ذرات محصولات تجاری بین ۱ تا ۱۰ میلی‌متر و سطح آن‌ها m2/gr 40-10 است.

کاربرد اصلی برای کائولین به عنوان پرکننده در صنعت لاستیک است،  جایی که تشخیص بین خاک رس سخت و نرم تمایز قائل می شود.

کائولین اغلب به شکل کلسینه و آماده سازی‌های سطح ویژه (به عنوان مثال سیلان) استفاده می‌شود. در ترموپلاستیک‌ها، به بهبود مقاومت شیمیایی، خصوصیات الکتریکی و کاهش جذب آب کمک می‌کند. این تمایل به ترک را در کالای نهایی کاهش می‌دهد و مقاومت در برابر ضربه و کیفیت سطح را بهبود می‌بخشد. ساختار لایه‌ای منجر به بهبود در سفتی سطح محصولات نهایی شده می‌گردد.

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

عوامل پراکنده ساز و اتصال دهنده برای پلاستیک های پرشده

در صنعت پلاستیک پرکننده ­ها نقش مهمی را در رسیدن به استحکام، پایداری ابعادی، و دیگر خواص مورد نیاز برای کاربردهای مورد نظر، دارند. عمل کرد پلیمرهای تقویت ­شده نه تنها به مشخصات فیلر، بلکه به میزان پراکنش و نیز به بر هم ­کنش ­های ایجاد شده در سطح مشترک فیلر-پلیمر، بستگی دارد. پراکنش خوب پرکننده در یک رزین پلیمری برای دست یابی به عمل کرد مطلوب در کاربرد نهایی بسیار مهم است .به منظور پراکنش مؤثر ماده­ پرکننده، در ابتدا لازم است که در مورد عوامل پراکنده­ ساز و اتصال دهنده، چگونگی عمل کرد این مواد افزودنی در سطح پرکننده/پلیمر و نیز مزایای استفاده از آن  ها در فرمولاسیون، در راستای ارائه­ عمل کرد بهتر و هزینه­ کمتر، بیش تر بدانیم.

چرا به عوامل پراکنده ­ساز و اتصال ­دهنده نیاز داریم؟

از چند دهه­ گذشته تا کنون، ترکیب مواد پرکننده­ی معدنی و آلی در یک ماتریس پلیمری از اهمیت صنعتی قابل توجهی برخوردار بوده است. این افزودنی­ ها برای تولید کامپوزیت­ های جدید با خواص مطلوب جهت استفاده در کاربردهای خاص به ترکیب اضافه می­ شوند. رنگدانه ­ها، مواد پرکننده، و سایر مواد جامد با اندازه­ بسیار کوچک را می­ توان از طریق افزودن عوامل پخش کننده و عوامل اتصال، با سهولت بیشتری در ترکیبات پلاستیکی گنجاند. پخش کننده­ ها برای خیس کردن­، پایداری و افزایش میزان افزودن رنگدانه ­ها و سایر مواد پرکننده بکار می ­روند. آنها معمولاً در کامپوزیت ­ها و نانوکامپوزیت­ ها برای موارد زیر استفاده می­شوند: پراکنش مناسب و افزایش سطح بر هم ­کنش بین پرکننده مورد استفاده و ماتریس پلیمری بنابراین، عوامل پراکنده ­ساز و نیز عوامل اتصال­دهنده به تولید یک سوسپانسیون پایدار کمک می­ کنند تا بتوان بدون هم­زدن مکانیکی ان­ها را فرآیند کرد و در نتیجه تجمع ذرات را تا حد امکان کاهش داد. در همین راستا: انرژی مورد نیاز برای پراکنش کاهش و همگنی محصولات نهایی بهبود می ­یابد. بعلاوه، در نتیجه­ پراکنش بیش تر، استحکام رنگ رنگدانه­ ها افزایش می ­یابد و منجر به افزایش بازده آن­ها خواهد شد. در هر غلظتی، عوامل پراکنده­ ساز و عوامل اتصال­ دهنده می­ توانند به طور موثری فرآیندپذیری، خصوصیات مکانیکی و زیبایی پلاستیک­ ها را افزایش دهند.

مزایای استفاده از عوامل پراکنده ­ساز در کامپوزیت­ ها: 

  • ویسکوزیته کمتر/بهبود جریان پلیمر جهت افزایش بازدهی به معنی پر کردن بهتر قالب، تولید قطعاتی با دیواره­ی نازک تر (نمودار پایین).

 

Untitled

 

 

  • افزایش استحکام ضربه
  • تنش تسلیم و ازدیاد طول تا پارگی بالا
  • استحکام رنگ بالاتر در نتیجه­ پراکنش بهتر
  • افزایش زیبایی
  • مسدود شدن سطح پرکننده و عدم جذب مواد افزودنی دیگر از پلیمر

بهبود خواص ذکر شده پلاستیک­ ها را مناسب استفاده در کاربردهایی نظیر موارد زیر می­ سازند:

  • بسته ­بندی
  • قطعات الکترونیکی
  • اتومبیل
  • هوافضا
  • لوازم خانگی

ساز و کار:

چسبندگی پلیمر به سطح پرکننده توسط عواملی بهبود می­ یابد که حداقل دارای دو گروه عاملی باشند. یک گروه به سطح پرکننده و گروه دیگر چسبندگی به پلیمر را ایجاد کرده و به طور مؤثری از تجمع ذرات پرکننده جلوگیری می کند.

ساختار کلی پراکنده­ ساز شامل یک گروه لنگر (A) است که باید به صورت شیمیایی با سطح فیلر پیوند برقرار کند و یک گروه بافر (B) که ذرات را از هم جدا کرده و در نتیجه ذرات به هم نمی­ چسبند. عوامل پراکنده ­ساز به ذرات می­ چسبند اما هیچ گونه برهم ­کنش قوی و خاصی با پلیمر اطراف ندارند. این مواد باعث افزایش همگنی شده و از ایجاد نقص­ هایی که در نقاط تجمع ذرات به وجود می­ آیند جلوگیری می ­کنند.

ساختار کلی عامل اتصال­ دهنده اما، از یک گروه لنگر (Anchor) (A)، یک گروه بافر/پل (Buffer/Bridge) (B) و یک گروه جفت­کننده (Couplant) (C) تشکیل شده است. عوامل اتصال­ دهنده در اصل مولکول­ های هیدروکربن با زنجیره کوتاه هستند، که یک انتهای آن ها با پلیمر سازگار یا واکنش پذیر است در حالی که انتهای دیگر قادر به واکنش با الیاف یا پرکننده ­هاست.

Untitled

این عوامل به ذرات می­ چسبند اما باید از طریق پیوندهای شیمیایی یا گره­ خوردگی­ های زنجیری به پلیمر هم متصل شوند تا استحکام را برای ماده به ارمغان بیاورند.

Untitled

معمولاً الیاف یا ذرات پرکننده، قبل از قرار گرفتن در ماتریس پلیمر با عامل جفت­کننده اصلاح شده و با یک لایه­ سطحی به صورت شیمیایی پوشش داده می ­شوند.

انواع پراکنده­ سازها

عوامل پراکنده ­ساز موجب بهینه شدن توزیع مواد پرکننده در ترکیبات می­ شوند. در طی فرآیند پراکنش، این مواد افزودنی به پوشاندن سطح تازه تشکیل شده­ از ذرات اولیه کمک می­ کنند. بدین ترتیب، آنها از تجمع و کلوخه شدن ذرات جلوگیری می­ کنند.

انواع پراکنده­ سازها مشابه انواع عوامل اتصال هستند چرا که در هر دو مورد، شیمی مورد نیاز برای اتصال ماده­ افزودنی به سطح پرکننده یکسان است.

انواع مختلف عوامل پراکنده ­ساز و عوامل اتصال دهنده شامل موارد زیر می­ شوند:

  • ارگانوسیلان­ ها
  • ارگانومتالیک ­ها (مانند تیتانات ­ها، آلومینات­ ها و زیرکونات­ ها)
  • اسیدهای غیراشباع
  • پلیمرهای دارای گروه عاملی اسیدی
  • پراکنده ­سازهای پلیمری
  • واکس ­ها ( پلی­ اتیلن، پلی­ پروپیلن، متالوسن، و …)
  • و دیگر موارد…

هیچ عامل پخش ­کننده یا اتصال­ دهنده­ای مناسب همه سیستم­ های پرکننده-پلیمر نیست. برخی از این عوامل معمولاً بیش تر از سایرین کاربرد دارند، در حالی که برخی دیگر در موارد خاص استفاده می­ شوند.

عوامل اتصال­ دهنده و پخش­ کننده­ سیلانی

در طی اصلاح سطح یک ماده پر کننده یا رنگدانه با سیلان، یک واکنش بین گروه های عاملی ماده پرکننده یا رنگدانه (مانند گروه­ های OH) و گروه­ های آلکوکسی سیلان انجام می­ شود تا یک سطح عامل دار شده­ سیلانی ایجاد شود.

به منظور بهبود سازگاری پرکننده با ماتریس پلیمر، می ­توان سطح پرکننده را از طریق ایجاد برهم ­کنش­ های خاص یا واکنش شیمیایی بین گروه عاملی پلیمر و گروه عاملی آلی ارگانوسیلان، عامل ­دار کرد. عاملیت سیلان نیز باید متناسب با ماتریس پلیمر انتخاب شود.

اصلاح سیلانی هم­چنین به ایجاد یک لایه­ محافظ می­ انجامد که از کلوخه شدن مجدد ذرات جلوگیری می­ کند.

استفاده از عامل پخش­ کننده­ سیلانی در فرمولاسیون ترموپلاستیک، لاستیک و یا ترموست پرشده، مزایای زیادی به همراه دارد که در نهایت باعث فرآیندپذیری آسان­ تر و یا عمل کرد بهتر محصول نهایی می­ شود.

فرمول عمومی یک ارگانوسیلان­ دارای دو نوع گروه عاملی است:

(RnSiX(4-n

  • R یک گروه عاملی آلی است که عامل اتصال را قادر به برقراری پیوند با رزین­ های آلی و پلیمرها می­ کند.
  • X یک گروه قابل هیدرولیز، غالباً آلکوکسی، اسیلوکسی، آمین، و یا کلرین است.

یک عامل اتصال­دهنده­ سیلانی در اصل به عنوان نوعی واسطه عمل کرده و سطح پرکننده را به ماتریس پلیمر متصل می کند. از طریق هیدرولیز، یک گروه فعال سیلانول تشکیل می­شود که می­ تواند با سایر گروه­ های سیلانول از جمله گروه­ های روی سطح سیلیکا، سیلیس و سایر فیلرها (که در سطح خود گروه هیدروکسی دارند)، متراکم شده و پیوند سیلوکسان ایجاد کند. این ویژگی­ عوامل اتصال سیلانی را به گزینه ­ای مناسب برای بهبود استحکام مکانیکی و سختی کامپوزیت­ ها، ارتقای چسبندگی رزین ­ها، و هم­چنین اصلاح سطح مبدل می ­کند.

پخش ­کننده ­ها و عوامل اتصال آلی فلزی (organometallic) (تیتانات­ ها، زیرکونات ­ها، آلومینات­ ها)

پخش­ کننده­ ها و عوامل اتصال آلی فلزی بعنوان پل ­های مولکولی در سطح مشترک بین فیلرهای معدنی (مانند CaCo3، BaSO4، گرافیت، تالک، دوده، سیلیکا، و اکسیدهای فلزی) و پلیمرها عمل کرده و غالباً به منظور افزایش انعطاف­ پذیری به کار برده می­ شوند.

در خانواده­ عوامل اتصال ­دهنده­ آلی فلزی، تیتانات ­ها بیش از زیرکونات­ ها و آلومینات­ ها دارای محبوبیت هستند.

عوامل اتصال ­دهنده­ آلی فلزی غالباً از طریق پیوند کووالانسی، نیروهای ون­دروالس و پیوند هیدروژنی پیوند برقرار می­ کنند و هم برای ترموپلاستیک­ ها و هم برای رزین­ های ترموست مناسب هستند. همان طور که در بالا ذکر شد، این مواد افزودنی بر روی پرکننده­ هایی مانند کربن سیاه، گرافیت، سولفات باریم و سایر مواد پرکننده­ بدون گروه هیدروکسی مؤثر هستند.

پراکنده­ سازهای پلیمری

پخش کننده ­های پلیمری، که به آن ها Hyperdispersants نیز گفته می شود، مواد پلیمری هستند که برای سطوح عمل کردی  به مراتب بالاتر طراحی شده ­اند. این مواد به طور معمول دارای وزن مولکولی بالاتری هستند و این بدان معنی است که ممکن است حاوی چندین گروه لنگر و زنجیره ­های پایدارکننده باشند. پراکنده ­سازهای پلیمری می ­توانند متناسب با طیف وسیعی از رنگدانه­ ها یا مواد پرکننده و در محیط­ های مختلف طراحی شوند.

در مقایسه با محلول ­های پخش کننده­ استاندارد مانند ، پراکنده­ سازهای پلیمری به دلیل ساختار و ویژگی­های خاصشان، مزایا و عملکرد بی­ نظیری را برای ترموپلاستیک ­ها، ترموست­ ها و رنگ­ دهنده­ های مایع ارائه می­ دهند. از جمله این مزایا می ­توان به موارد زیر اشاره کرد:

  • کیفیت بالاتر – استحکام بالای رنگ
  • انعطاف ­پذیری بهبودیافته
  • بهبود فرآیندپذیری و افزایش تولید

بهترین عوامل پراکنده ­ساز برای پرکننده ­های مختلف به ترتیب:

انواع مختلفی از پرکننده ­ها در دسترس هستند که هر کدام به عوامل پراکنده ­ساز و اتصال­ دهنده­ متفاوتی نیاز دارند. این پرکننده ها عبارتند از:

  • دوده
  • کلسیم کربنات
  • سیلیکای رسوبی
  • آلومینیوم هیدروکسید
  • تالک
  • کائولین
  • و موارد دیگر…
  • Untitled

 

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com 📧