وضعیت ورود
درحال حاضر شما وارد سایت نشده اید.
آمار بازدیدکنندگان
  • کاربران حاضر: 0
  • بازدید امروز: 2,003
  • بازدید ماه: 66,532
  • بازدید سال: 872,611
  • کل بازدیدکنند‌گان: 241,483
قیمت روز

پلی‌آمید

تجدید علاقه به کامپوزیت‌های طبیعی!

پرکننده‌ها و الیاف طبیعی گیاهی جاذبه جدیدی پیدا کرده‌اند از آنجایی که کاربران خواهانِ کامپاندهای پلاستیکی پایدارتر و اغلب سبک‌تر هستند.

Jennifer Markaria گزارش می‌دهد.

فیلرها و الیاف گیاهی طبیعی یا تجدیدپذیر از ابتدای آغاز صنعت پلاستیک گزینه‌ای برای ترکیبات پلیمری بوده است. اما تمرکز اخیر بر کاهش ردپای کربن جلب توجه جدیدی به آن‌ها است. در حالی که در برخی موارد، مواد گیاهی موجود تا به امروز فاقد خواص مکانیکی بوده تا جای‌گزین مستقیم الیاف شیشه شوند. فرمول‌سازان را‌ه‌های زیادی برای جبران این موضوع پیدا کردند، چه راه‌های ترکیب با شیشه یا به‌کارگیری روش‌های جدید برای بهبود خواص پایه مواد گیاهی. بخش خودرو سال‌ها است که در صدر کار برای ترکیب مواد طبیعی قرار گرفته و به دنبال افزایش استفاده از محتوای پایدار با حفظ عمل‌کرد است. Alper Kiziltas کارشناس فنی فورد می‌گوید: چندین بازار، سیاست و عوامل فنی در حال آمدن هستند تا الیاف طبیعی را گزینه‌ای جذاب‌تر برای کاربردهای خودرویی کنند. این شامل تغییر در رفتار مصرف‌کننده، چارچوب‌های سیاست فعلی، افزایش استفاده از پلاستیک در خودروها، نگرانی‌های زنجیره تأمین برای الیاف شیشه و نوآوری‌های تحقیق و توسعه حاصل از تأمین‌کنندگان الیاف طبیعی است. Kiziltas همچنین بیان کرد: این در حال تبدیل شدن به یک استراتژی تجاری اصلی برای صنعت خودرو است تا با آینده منابع محدود مقابله کند. استفاده از الیاف طبیعی پایداری زیست‌محیطی شرکت ما را بهبود می‌بخشد. براساس مطالعات درونی ما و داده‌های شخص ثالث، قطعاً مزایای LCA (ارزیابی چرخه عمر) در مقابل مواد معدنی و الیاف وجود دارد. استفاده از این مواد در حال گسترده‌تر شدن است. Kiziltas اشاره می‌کند که گروه مواد در حال ظهور و پایداری در فورد، تحقیقات کامپوزیت‌های پایدار را از سال ۲۰۰۰ را اجرا کرده است که منجر به استفاده از طیف گسترده‌‌ای از مواد تجدیدپذیر نظیر کنف، پوست برنج و سلولز می‌شود. برخی از آن‌ها کاندیدهای بدیهی‌تری نسبت به دیگری هستند. آزمایشات اخیر فورد نشان داده است که پوست قهوه پس از فرآیند بیوکربونیزاسیون می‌تواند جای‌گزین تالک در کامپاندهای PP شود. آزمایش پوست قهوه به عنوان روشی برای استفاده از ضایعات کشاورزی جهت ایجاد یک محصول پایدار انجام شد. Kiziltas  بیان کرد: در حالی که آزمایشات اولیه مشکلاتی از قبیل بو، جذب آب و کربنی کردن قهوه این نگرانی‌ها را حل کرد و سازگاری بهتر با ماتریس PP را نتیجه داد. سازگاری بهبود یافته همراه با کاهش آب دوستی پر کننده کربنی شده باعث کاهش جذب رطوبت توسط قطعه کامپوزیت می‌شود. تیم فورد فرمول PP را با استفاده از ۲۰ درصد کربن زیستی (پوست قهوه) برای فورد ۲۰۲۰ توسعه داد تا جای‌گزین تالک ۴۰% در چراغ جلو تزریقی شود. Kiziltas می‌گوید: با استفاده از پوست قهوه (کربن زیستی) وزن را ۱۷% و هزینه را ۵% کاهش دادیم، بدون این که فرآیند یا عمل‌کرد قطعه قربانی شود.

Untitledq

فورد همچنین توانست از دمای فرآیند کم‌تری برای قالب‌گیری بخش بایوکامپوزیت استفاده کند که منجر به چرخه خنک‌سازی کوتاه‌تر و صرفه‌جویی انرژی می‌شود. یک صرفه‌جویی اضافی در حدود ۱۵% در انرژی مصرف شده به هنگام اکسترود کردن مواد حاوی کربن زیستی وجود دارد که دلیل آن روان‌کاری مواد آلی در مقایسه با رئولوژی مواد معدنی است. Kiziltas بیان می‌کند: به طور کلی ما نتایج این ماده کامپوزیت نوآورانه را در صرفه‌جویی کل انرژی ۲۵% تخمین زدیم. تیم تحقیق و توسعه فورد نیز در حال بررسی پرکننده‌های کربن زیستی است. با استفاده از پیرولیز زیست توده جهت دست‌یابی به ماده متخلخل تولید می‌شوند که به عنوان یک راه حل جهت بهبود پایداری گرمایی مواد طبیعی است. الیاف طبیعی دارای پایداری حرارتی کمتری نسبت به بسیاری از الیاف جای‌گزین مصنوعی، محدود شدن کاربرد آن‌ها به دمای فرآیند پایین پلیمر (کمتر از ۲۰۰ درجه) و محیط‌های خودرو با دمای پایین هستند. مطالعات اخیر ما ثابت کرد که می‌توانیم با استفاده از کربن زیستی به عنوان پرکننده در کامپوزیت‌های ترموپلاستیک مهندسی مانند PA6 و PA66 استفاده کنیم.

نانو سلولز

Performance Biofilaments کانادا که با حمایت از ercer International و Resolute Forest Products می‌گوید: تکنولوژی فرآیند اختصاصی با بهره‌گیری از الیاف چوب آن‌ها را به نانوفیبریل سلولز (NFC) با استحکام و خلوص بالا تبدیل می‌کند. مطابق گفته‌ Geoff Fisher مدیر توسعه این شرکت، مواد NFC در ترموپلاستیک‌ها برای طیف وسیعی از کاربردها در حال ارزیابی هستند. عمل‌کرد بیوفیلامنت‌ها اخیراً با یک سری آزمون‌های مرکز تحقیق و توسعه مواد خودرویی شخص ثالث در کانادا تکمیل شد. ما NFC خود را در یک سیستم هیبریدی با الیاف شیشه در آمیزه‌های PP ترکیب کردیم و نتایج امیدوارکننده‌ای به دست آوردیم. Fisher می‌گوید: هدف این سری آزمایش نشان دادن این که بتوانیم پایداری محتوا را در آمیزه PP افزایش دهیم (یعنی افزایش محتوای الیاف طبیعی و کاهش محتوای الیاف شیشه) و سطح بالایی از عمل‌کرد را حفظ کنیم. این شرکت در حال ساخت یک کارخانه تجاری برای تولید NFC است که انتظار می‌رود تا پایان سال ۲۰۲۲ راه‌اندازی شود. Green Dot Bioplastics در ایالات متحده پلیمرهای زیستی و قابل کمپوست را تولید می‌کند. Terratek پلاستیک تقویت شده با الیاف طبیعی آن در خط تولید ۲۰۲۰ تجاری‌سازی شده است. این مواد کامپوزیتی زیستی از الیافی مانند سیزال، بامبو آمریکایی و الیاف جوت احیا شده برای جای‌گزینی الیاف شیشه در PP ،PE و PA استفاده می‌کند. در حالی که الیاف طبیعی جای‌گزینی ۱:۱ برای الیاف شیشه نیستند، آن‌ها یک گزینه پایدار را در بسیاری از کاربردها فراهم می‌کنند که تقویت و سختی فراتر از مواد پر نشده مورد نیاز است. شرکت می‌گوید که هم کامپاند و هم مستربچ الیاف طبیعی را تأمین می‌کند. Mark Remmert مدیر عامل Green می‌گوید: عمل‌کرد و تأمین، دو عامل کلیدی در انتخاب الیاف طبیعی هستند. ما باید بتوانیم از یک محصول تکرارپذیر و عمل‌کرد آن برای مشتریانمان اطمینان حاصل کنیم. بامبوی آمریکایی یک چمن بومی با خواص فیزیکی مطلوب و شیوه‌های رشد پایدار است. سال گذشته Green Dot Bioplastics با توامندترین شرکت در زنجیره تأمین، Mayco International برای حذف اتلاف و ضایعات الیاف جوت از فرآیند Mayco شریک شد، تا یک ماده NFRP جدید ایجاد کند. Sarah Harbaugh مدیر فروش و بازاریابی شرکت می‌گوید: به جای ضایعات و دفن آن، از بهره‌گیری آن‌ها و ترکیب در گرانول بیوکامپوزیت برای کاربردهای دیگر استفاده می‌کنیم. مطابق اظهارات Luis Roca Blay  رهبر آمیزه‌سازی، سازمان تحقیقات اسپانیایی Aimplas، بسیاری از الیاف طبیعی را برای استفاده به عنوان افزودنی تقویت‌کننده در پلاستیک‌های کامپوزیتی زیستی را در طول سال‌ها بررسی کرد. نمونه‌های آن شامل: کنف، سیسال، کتان، جوت و … هستند. هنگام توسعه آمیزه از پلاستیک زیستی، او پیشنهاد می‌کند که استفاده از الیاف طبیعی مطلوب‌تر باشد؛ به طوری که بسیاری از اجزا تا حد امکان تجدیدپذیر و در برخی موارد قابل کمپوست باشد.

Untitledz

نگرانی کمپوست‌سازی

کمپوست‌پذیری ویژگی جذاب رو به رشد در اروپا به ویژه برای بسته‌بندی است. با این حال اقلام بسته‌بندی ساخته شده با استفاده از پلاستیک قابل کمپوست تقویت شده با پایه گیاهی الیاف ممکن است در دست‌یابی به استاندارد EN13432 برای کمپوست‌پذیری صنعتی مشکل داشته باشند، بسته به درصد الیاف استفاده شده و ضخامت بخش. او می‌گوید: آسیاب کردن بسته‌بندی قبل از کمپوست‌‌سازی راه حلی برای این مشکل ارائه می‌دهد. استحکام و وزن کامپوزیت عوامل کلیدی در بسیاری از مصارف نهایی هستند. Roca همچنین می‌گوید: الیاف طبیعی جای‌گزین مستقیمی برای الیاف شیشه در راستای خواص تقویت‌کنندگی نیست اما اضافه می‌کند که می‌تواند مواد تقویت‌کننده معدنی را جای‌گزین کند و وزن را کاهش دهد. سایر افزودنی‌ها مانند اصلاح‌کننده‌های ضربه ممکن است برای ایجاد تعادل ویژگی لازم استفاده شود. Aimplas اخیراً تأخیرانداز شعله‌ در فرمولاسیون حاوی الیاف طبیعی را مورد مطالعه قرار داده است. Roca گزارش می‌دهد که در یک فرمول اثر منفی در به تأخیر انداختن شعله یافت نشد. جای‌گزینی پلاستیک با درصدی از الیاف طبیعی سبب کاهش انتشار گرما می‌شود. همچنین مطالعه فرمولاسیون‌های حاوی الیاف طبیعی و بازدارنده شعله مبتنی بر فسفر مورد بررسی قرار گرفت و تأیید شد که برهم‌کنشی مضر بین آن‌ها نیست. انجمن تحقیقاتی نروژی RISE PFI می‌گوید که به پیشرفت در توسعه بیوکامپوزیت‌های تولید شده مبتنی بر پلیمرهای زیستی به عنوان مثال الیاف زیستی، نانوسلولز و لیگنین ادامه می‌دهد. Gary Chinga Carrasco رهبر دانشمند در Biopolymers و Biocoposite منطقه در اتحادیه می‌گوید: این‌ها در حال توسعه و ارزیابی برای طیف وسیعی از کاربردها از جمله زیربنا، خودرو، بسته بندی نوشیدنی و غذا، مراقبت‌های بهداشتی و ساخت افزایشی (چاپ سه‌بعدی) هستند. این انجمن دارای یک آزمایشگاه کاملاً مجهز به چاپ سه‌بعدی جهت حمایت از افزایش تقاضا است. شرکای صنعتی به دنبال زیست پایه و راه حل‌های مواد پایدار برای چاپ سه‌بعدی و همچنین قالب‌گیری تزریقی هستند. چاپ سه‌بعدی امکان خوبی را برای ساخت سازه‌های پیچیده‌ای که ساخت آن‌های با فرآیندهای مرسوم آسان نیست فراهم می‌کند. چاپ سه‌بعدی نه تنها برای نمونه‌سازی استفاده می‌شود بلکه از آن برای ساخت دستگاه‌های کاربردی برای کاربردهای خیلی خاص استفاده می‌شود. Chinga Carrasco می‌گوید: علاوه بر این مصرف مواد کاهش می‌یابد که یک مزیت بزرگ از نقطه نظر اقتصادی و زیست‌محیطی است. او همچنین اضافه کرد: بایوکامپوزیت‌های زیستی تجدیدپذیر هستند و اگر ضروری باشد می‌تواند زیست‌تخریب‌پذیر باشد. این در مقایسه با سایر پلیمرهای فسیلی پر شده سودمند است. این منطقه در حال رشد توسعه مواد پایدار است که همچنین با اقتصاد زیستی و چرخه‌ای مطابق است.

دستاوردهای قالب‌گیری

فراتر از چاپ سه بعدی، پروژه RISE PFI’s BioComp در حال توسعه مواد بایوکامپوزیت جدید و پایدار است تا جای‌گزینی برای پلاستیک‌های پایه نفتی (فسیلی) در بخش قالب‌گیری تزریقی باشد. این پروژه تا حدی توسط شورای تحقیقات نروژ تأمین می‌شود؛ همکاری بین RISE PFI و شرکت‌های alloc نروژی (یک شرکت محصولات ساختمانی)، Norske Skog Saugbrugs (تولیدکننده بایوکامپوزیت) و Plasto (قالب‌گیر تزریقی) است. این پروژه در سال ۲۰۲۱ آغاز شده است و شرکا می‌گویند پیشرفت چشم‌گیری داشته‌اند. مطابق گفته‌ Dag Molteberg مدیر ارشد و توسعه Norske Skog Saugbrugs ساخت کارخانه جدید ارائه بایوکامپوزیت را به پایان رسانده است که دارای خروجی ۱۲۰ کیلوگرم بر ساعت در حداکثر سرعت (حدود ۱ تن در یک روز کاری عادی) است. این شرکت تأسیسات بزرگ مکانیکی حرارتی خمیر کاغذ (TMP) برای تولید کاغذ و بایوکامپوزیت با الیاف TMP از چوب صنوبر را تأمین خواهد کرد. یک قسمت از کارخانه برای خشک کردن، آماده سازی و گرانول سازی الیاف چوب استفاده می‌شود. بخش دوم سیستم ترکیب را در خود جای داده است که الیاف خرد شده (گرانول شده) با پلاستیک‌ها و افزودنی‌ها جهت تولید گرانول‌های بایوکامپوزیتی (با نام تجاری Cebico) ترکیب می‌شوند. سیستم اختلاط شامل مناطق گاززدایی جهت حذف رطوبت و ویژگی کنترل دما به خوبی تنظیم شده است. Molteberg می‌گوید: خط قابلیت خرد کردن هوا خشک شده و در زیر آب را دارد. قطر آمیزه‌های گرانولی بین ۳ تا ۵ میلی‌متر و طول آن‌ها بین ۴ تا ۷ میلی‌متر است. Saugbrugs چندین تن از این مواد را از زمان تولید آزمایشی در دسامبر سال گذشته تولید کرده است. همچنین اضافه می‌کند: آزمایش مواد نشان می‌دهد که الیاف به خوبی در ماتریس پراکنده شده اند. استحکام کششی مطلوب و سختی خمشی بالا می‌دهد. پایداری ابعادی حرارتی از PE و PP پر نشده بهتر است و نتایج، جذب آب بسیار کم حتی در آب جوش را نشان می‌دهد. پارامترهای جریان مذاب نیز برای قالب‌گیری تزریقی قابل قبول هستند. Molteberg می‌گوید: مقدار الیاف در کامپوزیت‌ها می‌توانند بین ۲۰ تا ۶۰% وزنی متغیر باشند، اما به طور معمول بین ۳۰ تا ۴۰% است. جز ترموپلاستیک شامل PE یا PP خام و بازیافت شده و در این پروژه استفاده از مواد ترموپلاستیک مبتنی بر زیستی و زیست‌تخریب‌پذیر بررسی خواهد شد. Plasto قالب‌گیر تزریقی، گرانول‌های بایوکامپوزیتی را با استفاده از تجهیزات قالب‌گیری تزریقی خوکار با سرعت بالا فرآیند می‌کند. Runar stenerud مدیر پروژه Plasto می‌گوید: خط تولید برای تولید روزانه به صورت ۲۴ ساعته و بدون نیاز به اپراتور پیکربندی شده است و خروجی بالا و پایدار اجزای بایوکامپوزیت تولید شده را تضمین خواهد کرد. Stenerud  بیان کرد: همکاری با  RISE PFI در پروژه BioComp بینش ارزشمندی از خواص مکانیکی و فرآیندی مرتبط با خواص و همچنین چگونگی طراحی برای جابه‌جایی بهینه در پایان طول عمر را به ما اعطا کرد. درگیری توسعه مراحل اولیه مواد جدید نیز این فرصت را به ما می‌دهد تا بر مشخصات مواد تأثیر بگذاریم تا بهترین سازگاری ممکن را با محصول در دست توسعه و فرآیند تولیدمان تضمین کنیم. هدف شرکت محصولات ساختمانی Alloc بازاریابی محصولات امسال پروژه Biocomp است. Leif Kåre Hindersland مدیر تحقیق و توسعه شرکت می‌گوید: ما از تجربه کردن خرسندیم که تیم تحقیق و توسعه Rise PFI انجام داد که در این راستا می‌تواند برای بهبود عملیات ما منتقل شود و در تولید پنل و کف‌پوش‌ دیواری با کیفیت و خلاقانه کمک کند.

لیگنین کاربردی

شرکت فنلاندی UPM Biofore دارای چندین کسب و کار الیاف و زیست توده است و UPM Formi آمیزه پلاستیکی تقویت شده با الیاف سلولز برای قالب‌گیری تزریقی و چاپ سه‌بعدی را برای چندین سال تولید کرده است. این شرکت اکنون در حال توسعه یک پرکننده دیگر و در حال ساخت یک پالایشگاه زیستی در Leuna آلمان است که چوب راش را می‌گیرد و آن را به قندها هیدرولیز می‌کند که برای تولید بیومنواتیلن‌گلایکول و بیومنوپروپیلن گلایکول و لیگنین مناسب برای تبدیل به پرکننده‌های کاربردی تجدیدپذیر (RFF) استفاده می‌شود. یکی از اهداف RFF جای‌گزینی دوده یا سیلیکا رسوبی است. Christian Hübsch مدیر فروش و بازاریابی UPM Biochemicals (گروه UPM مستقر در آلمان) می‌گوید: در ترموپلاستیک و ترموست الاستومرها، RFF ممکن است دارای دو استفاده مختلف باشد. یک کاربرد برای RFF، یک رنگ‌دانه سیاه جای‌گزین دوده است. مورد دوم استفاده از درصد بالای RFF جهت افزایش محتوای تجدیدپذیر و کاهش ردپای کربن است. در حالی که ویژگی‌های مکانیکی قابل قبول حفظ شود. Hübsch می‌گوید: تا الان ما ترکیبات با ۳۰-۴۰% درصد وزنی RFF در PE، PP ، PBAT و… ساخته‌ایم. در حالی که RFF اغلب برای جای‌گزینی پلیمر در فرمولاسیون آمیزه استفاده می‌شود، می‌توان برای جای‌گزینی پرکننده‌های مرسوم جهت سبک‌سازی استفاده کرد. Hübsch می‌گوید: با دانسیته تنها ۱/۳ گرم بر سانتی متر مکعب، RFF 50 تا ۶۰% از بسیاری پرکننده‌های سفید سبک‌تر است. همچنین اضافه می‌کند: RFF با ترکیبات مبتنی بر سلولز یا کامپوزیت‌های چوب-پلاستیک متفاوت است. آمیزه‌های ترموپلاستیک با درصد بالای RFF نشان دهنده یک کلاس جدید از مواد با پتانسیل عظیم آینده است. RFF اساساً بدون ترکیبات آلی فرار (VOC) است و ما در حال جمع‌آوری داده‌های لازم برای صدور گواهینامه تماس با غذا و آب آشامیدنی هستیم. UPM مرکز کاربرد را در سایت Leuna بازگشایی و آزمایش، توسعه و همچنین خدمات آمیزه‌سازی محصول را آغاز کرده است. Hübsch می‌گوید: ما شرکت خود را به عنوان یک شریک مستربچ و آمیزه‌ساز می‌بینیم. با این حال ما توسعه آمیزه‌های خودمان را انجام می‌دهیم. ما هر دو را برای مشتری خاص، برنامه‌های بهینه‌سازی ترکیب و مطالعات بنیادین دیگر به صورت موازی برای طیف گسترده‌ای از پلیمرها و کاربردها اجرا می‌کنیم. انتظار می‌رود پالایشگاه زیستی صنعتی در اواخر سال ۲۰۲۳ راه اندازی شود و اولین مقادیر تجاری در اوایل سال ۲۰۲۴ در دسترس خواهد بود. در حال حاضر نمونه‌های مواد تا چند صد کیلوگرم توسط شرکای منتخب برای اهداف توسعه و تأیید آمیزه در حال آزمایش هستند. UPM می‌گوید که  BioMotion RFF دارای CO2 خنثی است و انتظار می‌رود در مقیاس صنعتی CO2 منفی باشد. بر اساس آنالیز چرخه عمر تأیید شده شخص ثالث مطابق گفته‌ Barbara Gall مدیر توسعه بازرگانی، پرکننده عمل‌کردی تجدیدپذیر در UPM Biochemicals فیلر بیش از ۹۴% محتوای کربن تجدیدپذیر خواهد داشت و خلوص بالا خواهد بود (VOC و محتوای گوگرد کم). Nymax Bio خط جدیدی از ترکیبات PA Avient است که دارای ۱۶ تا ۴۷% پرکننده از منابع گیاهی تجدیدپذیر مانند ذرت، کاه و گندم است. پایداری یک اولویت بالا برای برندهای مصرف کننده است.  Matt Mitchel بازاریاب جهانی مواد مهندسی تخصصی شرکت می‌گوید: اکثر ابتکارات در راستای محصولات با سازگاری بیش‌تر با محیط زیست ساخته شده‌اند. Avient می‌گوید: در مقایسه با جای‌گزین‌های پلی‌آمید ۶۶ تقویت شده با الیاف شیشه مرسوم، گریدهای مشتقات زیستی، تابیدگی کم‌تر همراه با سطح ظاهری و رنگ‌پذیری مطلوب ارائه می‌کنند. فرمولاسیون‌های با جذب کم آب به نمایش پایداری ابعادی بسیار خوب و حفظ ویژگی پس از شرطی‌سازی گفته می‌شود. انتظار می‌رود گریدهای جدید، کاربرد در خودروسازی، صنعتی و ساختمانی پیدا کنند و می‌توان آن را با قالب‌گیری تزریقی و اکستروژن فرآیند کرد. آن‌ها همچنین می‌توانند برای ارائه خواص کاربردی ویژه مانند جوشکاری لیزری یا تأخیر در شعله به صورت سفارشی فرموله شوند. مواد Nymax Bio در آسیا تولید می‌شوند اما در سطح جهانی در دسترس هستند.

کنف مناسب

مقررات در ایالات متحده در سال ۲۰۱۸ تغییر کرد تا اجازه رشد کنف را دهد. از آن زمان شرکت بیوتکنولوژی صنایع Heartland کار کرده است تا یک زنجیره تأمین کنف صنعتی قابل اعتماد ایجاد کند تا افزودنی‌های کربن منفی را برای پلاستیک‌ها فراهم کند. مطابق گفته‌ John ElY CMO در Heartland ریسک‌زدایی و مقیاس‌پذیری دو متغیر کلیدی در خلق زنجیره تأمین قابل اعتماد هستند. ما رویه‌های عملیاتی ساده خلق کردیم که هر کشاورز برای داشتن محصول موفق (مثل ذرت و سویا) می‌تواند از آن پیروی کند. این مهم‌ترین پی‌گیری برای کاهش خطر بانک‌ها و آژانس‌های بیمه است. به علاوه که ما در کنار کشاورزان در مناطق مختلف آمریکا برای بهبود انعطاف‌پذیری یک محصول در مورد حوادث موجود آب و هوایی کار می‌کنیم. Ely می‌گوید:  اولین برداشت عمده محصول ایالات متحده امسال پیش‌بینی می‌شود و انتظار دارد که قراردادهای تجاری را در سه ماهه‌ چهارم ۲۰۲۲ برای افزودنی‌های کنف ببیند. Heartland  در ماه ژانویه یک توافق توسعه مشترک با Ravago آمریکا را برای مهندسی کردن افزودنی‌های کنف برای کاربردهای آمیزه‌های پلیمری اعلام کرد. کامپاندهای پلاستیک پرشده با کنف گفته می‌شود که سبک‌تر، ارزان‌تر، پایدارتر با خواص گرمایی و آکوستیک افزایش یافته هستند. Ravago که بازیافت‌کننده، آمیزه‌ساز و توزیع‌کننده است Heartland را در فرمولاسیون افزودنی‌ها راهنمایی می‌کند که نیازی به ابزارآلات مجدد برای آمیزه‌ساز و قالب‌گیرها نخواهد داشت. کنترل کیفیت الیاف کنف heartland اندازه استوار، رطوبت و ناحیه سطح را فراهم می‌کند در حالی که فرآیند مهندسی اختصاصی فرآیند و پیوند با پلاستیک را بهبود می‌بخشد. Ely می‌گوید: هدف ارائه جای‌گزینی ۱:۱ به تولیدکنندگان است که هزینه کم‌تر همراه با دیگر ویژگی‌های کاربردی است که یکسان نگه داشته شده است. به عنوان مثال این شرکت در حال کار بر روی کنف پرشده به عنوان جای‌گزینی برای ترکیبات PP حاوی ۲۰% تالک است. الیاف نیز در پلیمرهایی از قبیل PE، PVC، ABS و PET ارزیابی شده است. به گفته‌ Ravago آمیزه PP حاوی ۲۰% کنف استحکام کششی تقریباً یکسانی با PP حاوی ۲۰% تالک خواهد داشت. به علاوه دارای ۲۰% مدول خمشی کم‌تر و ۲۰% مقاومت ضربه آیزود بیش‌تر است. Chuck taylor مدیر فنی و مدیر کسب و کار Ravago Manufacturing Americas می‌گوید: همچنین کاهش وزن قطعه تا حدود ۲۰% را ارائه می‌دهد. Taylor می‌گوید: جای‌گزینی الیاف شیشه با الیاف کنف مطلوب است اما هنوز ممکن نیست. ما باید یک شیمی با دوام جهت اصلاح کنف ایجاد کنیم تا به رزین برای ایجاد تقویت چسبانده شود. او گفت تا آن زمان کنف به عنوان پرکننده عمل خواهد کرد. با این حال مطابق گفته‌ او مشتریان به طور فزاینده‌ای درخواست محصولات تجدیدپذیر و پایدار را می‌کنند و به نظر می‌رسد درک کنند که این راه حل‌ها ممکن است افزایش هزینه را به دنبال داشته باشد. او اضافه می‌کند: این تمایل به پرداخت برای پایداری به طور چشم‌گیری با آنچه که در گذشته دیده‌ایم متفاوت است.

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

معرفی “Bio-Circular” PA 11 گرید پزشکی توسط شرکت Arkema

این پلیمر آسان برای فرآورش، به اندازه کافی سفت است که جای‌گزین بخش‌های فلزی در وسایل جراحی شود و تأثیر تغییرات شرایط آب و هوایی بسیار کم‌تری در مقایسه با پلاستیک‌های بر پایه فسیل دارد.

پلی‌آمید جدید (PA) 11 که برای کاربردهای پزشکی ساخته شده است، عمل‌کرد و ویژگی‌های سبک‌وزنی را با قابلیت‌های پایداری ترکیب می‌کند. بخشی از مجموعه مواد پیشرفته Bio-Circular Arkema، Rilsan MED PA 11 بر شیمی آمینو ۱۱ محصول برتر شرکت مذکور مبتنی است که از روغن کرچک مشتق شده است و می‌تواند به سازندگان تجهیزات پزشکی اصلی در دست‌یابی به اهداف پایداری سازمانی کمک کند.

Rilsan MED PA 11 با ۶۵% الیاف شیشه فرموله شده است که موجب ایجاد مدول کششی ۱۸٫۵ گیگا پاسکال می‌شود. به گفته Arkema، این ویژگی باعث می‌شود که این ماده کاندید مناسبی برای جای‌گزینی فلز در ابزارهای جراحی باشد. هم‌چنین ویژگی‌های فرآیندپذیری، از جمله دمای قالب و فشار تزریق پایین، به پذیرندگان اولیه کمک کرد تا به راحتی مواد را تغییر دهند و زمان‌های چرخه را کاهش دهند و در حالی که یکپارچگی جزء را حفظ کنند.

Rilsan MED PA 11 در برابر گامای مکرر، بخار، E-beam و چرخه‌های استریلیزاسیون EtO و قرار گرفتن در معرض مواد شیمیایی نامساعد مقاومت می‌کند. زیست‌سازگاری طبق استانداردهای USP کلاس VI و ISO 10993-4، -۵ و -۱۰ ارزیابی شده است.

اعتبارنامه پایایی Rilsan MED PA 11 شامل تأثیر تغییر آب و هوا به میزان ۵۰% کم‌تر از پلیمرهای بر پایه فسیل رقابتی و کاهش در افول سوخت‌های فسیلی است. این پلیمر به طور مؤثری قابل بازیافت است زمانی که از طریق برنامه Virtucycle حلقه باز یا بسته Arkema فرآیند می‌شود.

لینک خبر:

https://www.plasticstoday.com/medical/arkema-introduces-medical-grade-bio-circular-pa-11

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

ترکیب قالب‌گیری تزریقی با چاپ‌گر سه‌بعدی

 کاربرد پرینتر سه‌بعدی برای تولید و ساخت سریع موجب تولید مؤلفه‌هایی با هندسه‌های پیچیده مبتنی بر طراحی کامپوزیتی شده است. به دلیل خواص مکانیکی محدود و کارکرد بخش‌های پلیمری خالص پرینت شده، نیاز جدی به توسعه کامپوزیت‌های پلیمری با قابلیت پرینت با عمل‌کرد بالا احساس می‌شود. چاپ سه بعدی مزایای متعددی را در تولید کامپوزیت‌ها شامل دقت بالا، هزینه کم‌تر و هندسه سفارشی پیشنهاد می‌نماید. تکنیک‌های رایج پرینت سه‌بعدی مانند مدل‌سازی تجمع، سخت‌سازی لیزری انتخابی، پرینت سه بعدی جوهرافشان، استریولیتوگرافی و پلات سه بعدی معرفی خواهند شد.

پرینتر سه‌بعدی که از آن با عنوان تولید مواد افزودنی، کلیشه‌سازی سریع یا فرم آزاد و سریع یاد می‌شود، یک فرآیند اتصال مواد به یکدگر برای ساخت اشیایی از داده‌های مدل سه‌بعدی می‌باشد که معمولاً به صورت لایه‌لایه است. این فناوری اشیاء را با افزودن مواد به منظور کاهش ضایعاتی در حالی تولید می‌نماید که به دقت هندسی مطلوب و رضایت‌بخش دست پیدا می‌نماید. این شیوه با مدل کامپیوتری سه‌بعدی و سنجیده شده‌ای شروع به کار می‌کند که می‌توان به وسیله داده‌های تصاویر گرفته شده یا ساختارهای ایجاد شده در طراحی به کمک کامپیوتر آن‌ها را ایجاد کرد. فایل STL نیز عموماً ایجاد خواهد شد. داده‌های گروهی بعداً به فایل‌های ساختاری لایه‌های دو بعدی تقسیم‌بندی شده و به ماشین پرینت سه بعدی ارسال خواهند شد.

مواد پلیمر ترموپلاستیکی مانند اکریلونیتریل، بوتادی‌ان‌استایرن، پلی‌لاکیتک‌اسید، پلی‌آمید و پلی‌کربنات و همچنین مواد ترموست مانند اپوکسی رزین‌ها را می‌توان به وسیله این فناوری پردازش نمود.

بر اساس انتخاب‌های مختلف مواد، پرینت سه بعدی پلیمرها کاربردهایی در حوزه صنایع هوافضا برای ایجاد سازه‌های سبک و پیچیده، صنایع معماری برای مدل‌های سازه‌ای، حوزه‌های هنری برای تولید مصنوعات با آموزش و حوزه‌ پزشکی برای تولید بافت ها و اندام‌ها یافته است. با این وجود غالب محصولات پلیمری ساخته شده سه‌بعدی امروزه به عنوان کلیشه‌هایی مفهومی به جای مؤلفه‌های کاربردی استفاده می‌شوند زیرا محصولاتی که از پلیمر خالص تهیه می شوند و به این شیوه تولید می‌گردند فاقد مقاومت و کارکرده بود و نمی‌توان از آن‌ها به عنوان قطعات باربر و کاربردی بهره گرفت. چنین مشکلاتی موجب محدودیت کاربردهای صنعتی این پلیمرهای سه بعدی شده است. پرینت سه‌بعدی کامپوزیت‌های پلیمری این مسائل را با ترکیب ماتریس و تقویت به منظور تحقق سیستمی با ساختاری مفید یا خواص کارکردی بهتر حل کرده است. این خواص با استفاده از اجزای تشکیل‌دهنده دیگر به تنهایی قابل امکان نبود.

در همین راستا شرکت کانادایی فناوری چاپ سه بعدی Structur3d از سیستم Inj3ctor Platform خود رونمایی کرده است، یک سیستم قالب گیری تزریقی رومیزی که می ­تواند نظر طراحان و تولیدکنندگان صنعت کفش را به خود جلب کند. این سیستم برای تولید با استفاده از مواد الاستومری از جمله پلی­ یورتان ­ها و سیلیکون رابر مایع طراحی شده است.

Inj3ctor ترکیبی از قالب­ های چاپ شده­ سه بعدی و کارتریج­ های ماده برای مخلوط کردن و تزریق مواد انعطاف‌پذیر دو جزئی جهت تولید بچ­ های کوچک است. به گفته­ این شرکت، این پلت فرم قادر به غلبه بر مشکلات چاپ سه بعدی مواد لاستیکی با خواص مورد نظر است. هم­چنین، این امیدواری وجود دارد که بتوان از این فناوری در تولیدات سفارشی انبوه حوزه­ کفش و نیز سایر بخش­ ها استفاده کرد.

به گفته­ شرکت Strucure3d، توسعه ­دهندگان محصول می­ توانند با استفاده از نرم ­افزار استاندارد CAD یک قالب با جزئیات بسیار بالا طراحی کرده و قطعه ای با پلاستیک استاندارد، بادوام و یا قابل انحلال را به صورت سه بعدی چاپ کنند. سپس کاربران از بین ده ­ها هزار ماده­ لاستیک مایع موجود انتخاب کرده و آن را بر اساس میزان دوام، انعطاف‌پذیری، و زمان پخت تنظیم می­ کنند. در نهایت، پس از آنکه نسبت اختلاط و حجم تزریق در دستگاه برنامه‌ریزی شد، Inj3ctor قالب را پر کرده و یک محصول کاملاً سفارشی را ایجاد می ­کند.

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

 

پلی آمید Polyamide

پلی‌آمیدها گروه بزرگی از پلیمرهای طبیعی و مصنوعی را تشکیل می‌دهند که گروه عاملی آمیدی -NH-CO- در واحد ساختاری آن‌ها تکرار می‌شود. گروه‌های آمیدی به شدت به یک‌دیگر می‌چسبند و استحکام زیاد را تضمین می‌کنند. گروه‌های آمیدی که در اثر کشش به شکل تقریباً خطی درآمده‌اند، پیوندهای هیدروژنی قوی با یکدیگر برقرار می‌کنند که استحکام زیادی دارند. پلی‌آمیدها با توجه به مونومرهای سازنده آن‌ها به دو گروه دسته‌بندی می‌شوند. پلی‌آمیدهای نوع AABB (A نشان‌دهنده گروه آمینی و B نشان‌دهنده گروه اسیدی) نامیده می‌شوند. پلی‌آمیدها به روش پلیمرشدن افزایشی نیز تهیه می‌شوند، این روش برای تهیه برخی پلی‌آمیدهای نوع AB به کار می‌رود که مونومرهای آن‌ها لاکتام حلقوی مانند -کاپرولاکتام یا پیرولیدینون است. پلی‌آمیدهای آرووماتیک به پلیمرهایی اطلاق می‌شود که در آن‌ها یک پیوند آمیدی بین دو حلقه آروماتیک قرار می‌گیرد. این پلیمرها از واکنش دی‌آمین‌های آروماتیک با دی‌اسیدهای آروماتیک در حلالی آمیدی تهیه می‌شوند. از این پلیمرها، الیافی با مقاومت گرمایی خوب و استحکام کششی و مدول زیاد تهیه می‌شوند. به دلیل خواص فیزیکی غیر عادی پلی‌آمیدهای آروماتیک، نام عمومی آرامید بر آن‌ها اطلاق شد. آرامید الیاف سنتزی تهیه شده از پلی‌آمید با زنجیره طولانی است که در آن حداقل ۸۵% پیوندهای آمیدی (CONH) به طور مستقیم به دو حلقه آروماتیک متصل هستند.

خواص مکانیکی پلی‌آمیدهای آلیفاتیک

UntitledUntitled

 

نایلون‌ها مجموعه‌ای از پلاستیک‌های عضو این گروه از پلیمرها هستند و یکی از مهم‌ترین مواد پلیمری از نظر تعداد، تنوع، حجم مصرف می‌باشند. نایلون‌ها از روش پلیمریزاسیون تراکمی اسیدهای آلی دو عاملی با آمین‌های دو عاملی و یا از ترکیب آمینواسیدها پلیمره می‌شوند.

مزایای نایلون

چقرمگی و مقاومت در برابر ضربه عالی مقاومت سایشی عالی، ضریب اصطکاک پایین، خواص استحکام کششی بالا، مقاومت خزشی در حد مطلوب و حفظ خواص مکانیکی و الکتریکی در گسترده وسیعی از دما، مقاومت عالی در برابر روغن‌ها، گریس‌ها، حلال‌ها و بازها، از طریق همه روش‌های ویژه ترموپلاستیک‌ها می‌توان این دسته از پلیمرها را فرآیند نمود.

تعدادی از نایلون‌های پرمصرف صنعتی نایلون ۶۶، نایلون ۶، نایلون ۱۱، نایلون ۱۲می‌باشند. در این نام‌گذاری اولین شماره مریوط به تعداد اتم‌های کربن در دی‌آمین و دومین شماره مربوط به تعداد اتم‌های کربن در دی‌اسید را نشان می‌دهد.‌

Untitled

نایلون های بهبود یافته

به نایلون‌هایی بهبودیافته می‌گویند که با اضافه کردن یک افزودنی به آمیزه پلاستیک مانند پایدارکننده‌ها، تأخیرانداز‌های شعله، مواد رنگی، پرکننده‌ها و تقویت کننده‌ها، شفاف‌کننده‌ها، نرم‌کننده‌ها، روان‌ساز‌ها، تغییر چشم‌گیری در یک یا چند خاصیت مکانیکی و یا ویژگی‌های حرارتی آن به وجود آید. با افزودن الیاف کوتاه شیشه به نایلون و افزایش زیاد مقاومت در برابر ضربه آن‌ها، این پلاستیک را در گروه نایلون‌های بهبودیافته جای داده است. این دسته از مواد تقویت شده در بسیاری از خواص مکانیکی خصوصاً در برابر خزش بهبود خواص پیدا می‌کنند. نایلون‌های تقویت‌نشده، هنگامی که در معرض ضربه یا تنش کششی قرار می‌گیرند؛ به شیوه چقرمه به مرحله شکست خود می‌رسند. در حالی که نایلون‌های تقویت شده با الیاف شیشه، به شیوه شکننده و ترد به مرحله شکست خود دست پیدا می‌کنند.

کاربردهای نوعی نایلون

حمل و نقل: این بخش به تنهایی، بزرگ‌ترین بازار نایلون‌ها را نشان می‌دهد. کاربردهای مواد تقویت‌نشده عبارتند از رابط‌ها یا اتصال کننده‌های الکتریکی، پوشش‌های سیم و چرخ‌دنده‌های سبک، برای برف‌پاک‌کن‌های شیشه جلوی اتومبیل و سرعت‌سنج‌ها. نایلون‌های چقرمه محافظ ضد سنگ‌ریزه (که از برخورد سنگ‌های ریز در حین حرکت اتومبیل به شیشه جلوی خودرو جلوگیری می‌کند) (Stone Guards) و تزئینات داخلی اتومبیل (Trim Clips) به کار رفته‌اند. نایلون‌های تقویت‌شده با شیشه در پرده‌های فن موتور، سرپوش‌های رادیاتور (Radiator Heads)، مخازن روغن فرمان و ترمز در سوپاپ، حس‌گرها و تزریق‌کننده‌های سوخت مورد استفاده قرار گرفته‌اند. از رزین‌های تقویت‌شده با مواد معدنی، در ابزارآلات آیینه و قالپاق‌های رینگ تایر (Tire hub Covers) استفاده شده است. ترکیبی از شیشه و مواد معدنی در قطعات بیرونی همانند گلگیرهای یا سپرهای ضربه‌گیر اضافی (Fender Extensions) به کار گرفته شده است.

کاربردهای الکتریکی و الکترونیکی: نایلون‌های به تأخیرانداز شعله، از جمله نایلون‌هایی که در توافق با شرایط UL-94V0 عمل می‌کنند، نقش اصلی را در بازارهای کالاهای الکتریکی (دوشاخه، بست‌ها یا رابط‌ها، بوبین‌ها، وسایل سیم‌کشی، بلوک‌های ترمینال، ابزارهای نصب آنتن) ایفا می‌کنند.

لوازم خانگی: نایلون‌ها، نه فقط برای اجزای تشکیل‌دهنده کالاهای الکتریکی، بلکه برای قطعات مکانیکی، ابزارآلات و کاربردهای دیگر در ابزارهای برقی، ماشین‌های لباس‌شویی و لوازم خانگی کوچک گوناگون نیز از آن‌ها استفاده می‌شود.

کاربردهای ویژه در مخابرات: دستگاه‌های تقویت نیروی برق یا رادیو یا تلگراف، ایستگاه‌های تقویت، اتصالات و رابط‌ها یا متصل‌کننده ها.

کاربردهای صنعتی: شامل دست‌گیره‌های چکش یا پتک، قطعات ماشین چمن‌زنی، چرخ‌دنده‌های گریس‌کاری نشده، یاتاقان‌ها، قطعات ضد اصطکاک و دامنه گوناگونی از کاربردهایی که به گیره‌های فنری یا قزن‌های قفل‌های دارای نر-مادگی یا سوار کردن بار روی فنر نیاز دارند، می‌باشند.

تجهیزات مربوط به فرآیند نمودن مواد غذایی و منسوجات: شامل پمپ‌ها، شیرها، وسایل اندازه‌گیری، وسایل کشاورزی و چاپ، ماشین‌های اداری و فروش.

محصولات مصرفی: کاربردهای نایلون سخت و چقرمه‌شده عبارتند از چکمه‌های اسکی، پایه‌های اسکیت غلتک‌دار و اسکیت روی یخ، تجهیزات مربوط به راکت‌های ورزشی، چرخ‌های دوچرخه، لوازم آش‌پزخانه، اسباب‌بازی‌ها و تجهیزات عکاسی.

فیلم‌های نایلونی: از این فیلم‌ها، در حد گسترده‌ای برای بسته‌بندی انواع گوشت‌ها و پنیرها و نیز در کیسه‌های نچسب ویژه پخت و سرخ کردن مواد غذایی و همچنین کیسه‌های کوچک با کاربردهای مشابه در صنایع غذایی، فیلم‌های نایلونی. هم چنین به عنوان یک پوشش  احاطه‌کننده برای ساخت بال‌های کوچک هواپیما از جنس پلیمرهای گرماسخت می‌باشند، مورد استفاده قرار می‌گیرند.

پوشش سیم و کابل: از نایلون‌ها، غالباً به عنوان یک لایه محافظ بر روی لایه عایق اولیه استفاده می‌شود.

استفاده از نایلون در مصالح لوله‌سازی و لوله کشی و لوله گذاری: از آن‌ها برای انتقال سیالات ویژه ترمز، سیالات ویژه یخچال‌ها، یا به عنوان آستر داخلی برای کابل‌های انعطاف‌پذیر استفاده می‌شود.

اکستروژن: ورقه‌ها، میله‌ها، و شکل‌های دسته مانند در ماشین کاری.

کاربرد در مواد مقاوم گرمایی

این کاربرد شانل کیسه‌های صافی برای گازهای داغ خروجی از دودکش، پارچه‌های زیر پرس در پرس‌های صنعتی، مثل کاربرد در پرس دائم مرحله بافت نهایی کتان و لباس‌های پلی‌استرکتان، پوشش تخته اتو و نخ‌های خیاطی برای خیاطی بسیار سریع، عایق کردن کاغذ برای موتورهای الکتریکی و مبدل‌ها، لوله‌های ساخته شده برای عایق‌کاری سیم‌ها، تسمه‌های خشک‌کن برای کاغذسازی است. به عنوان حس‌گر در مخازن سوخت نیز استفاده می‌شوند.

کاربرد در مواد مقاوم در برابر شعله

این کاربرد شامل لباس‌های محافظ صنعتی مثل لباس جوش‌کاران و سایر لباس‌های محافظ، لباس آتش‌نشان، لباس‌های پرواز برای خلبانان نظامی و کیسه‌های پست، قالی‌ها، پرده و مبل و پارچه پوشش‌های باربری، پوشش قایق‌ها و چادرهاست.

کاربرد در موارد پایداری ابعادی

لوله‌های آتش‌نشانی، تسمه‌های Vشکل، تسمه‌های انتقال نیرو که به وسیله الیاف آرامید با مدول زیاد مانند نامکس تهیه می‌شوند، نمونه‌هایی از این کاربرد هستند.

کاربرد در موارد استحکام بسیار زیاد و مدول زیاد

این مواد در تسمه‌های V شکل کابل‌ها، چترهای پرواز، جلیقه‌های ضد گلوله، پلاستیک‌های تقویت‌شده صلب، اجزای آنتن، برد مدارهای الکتریکی، وسایل ورزشی، ریسمان‌های طناب کشتی، کابل‌های تلفن و خطوط نیرو و کابل‌های لیف نوری به کار می‌روند. کاربرد دیگر آن‌ها به عنوان جانشینی برای پنبه نسوز است.

کاربرد در موارد خواص ویژه

این کاربرد شامل ساخت غشاهای جداسازی تراوایی الیاف توخالی است که برای خالص‌سازی آب دریا و آب شور استفاده می‌شود.

کاربرد در صنایع اتومبیل‌سازی

به منظور کاهش وزن اتومبیل استفاده از پلاستیک‌ها در صنایع اتومبیل‌سازی در حال گسترش است. پلی‌آمید۶ و پلی‌آمید ۶۶ در صنعت اتومبیل‌سازی مصرف دارند. این صنعت ۲۵% مصرف جهانی پلی‌آمیدها را به خود اختصاص داده است.

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

به مناسبت زاد روز حکیم بزرگ بوعلی سینا و روز پزشک: کاربردهای پلیمرها در پزشکی

کاربردهای پلیمرها در پزشکی به مناسبت زاد روز حکیم بزرگ بوعلی سینا و روز پزشک

مقاله حاضر به مناسبت زاد روز حکیم بزرگ بوعلی سینا و روز پزشک به ذکر کاربردهای پلیمرهای مصنوعی از جمله پلی‌اتیلن، پلی‌پروپیلن، پلی‌یورتان‌ها، پلی‌آمیدها، پلی‌آکریلات‌ها، پلی‌تترافلورواتیلن، سیلیکون‌ها پلی‌استال و…، پلیمرهای مصنوعی زیست‌تخریب‌پذیر مانند پلی‌لاکتیک‌اسید، پلی‌گلیکولیک‌اسید، پلی‌کاپرولاکتون و… و پلیمرهای طبیعی در حوزه پزشکی می‌پردازد.

 

پلیمرها به دلیل تنوع بسیار زیاد و نزدیک بودن خصوصیات شیمیایی و مکانیکی برخی از آن‌ها به بافت‌های بدن، بیش از سایر مواد در کاربردهای پزشکی مورد توجه قرار گرفته‌اند. از این رو شناخت ساختار، ویژگی‌ها و خواص پلیمرها همچنین کاربردهای آن‌ها در حوزه زیست‌مواد (Biomaterials) از اهمیت بالایی برخوردار است. زیست‌مواد، موادی با ریشه مصنوعی یا طبیعی هستند که برای جای‌گزینی نسوج از دست رفته بدن، ترمیم اعضای از کار افتاده و یا تکمیل عمل‌کرد بافتی مورد استفاده قرار می‌گیرند که به هر دلیلی قادر به انجام وظیقه خود نباشند. ضمن این که باید حتماً در تماس مستقیم با سلول‌های زنده بدن بوده و با سامانه بیولوژیکی بدن برهم‌کنش داشته باشد. وسایل قلبی-عروقی، وسایل جای‌گزین بافت‌های نرم، سامانه‌های رهایش کنترل شده دارو و داربست‌های مهندسی بافت، از جمله این کاربردها هستند. رگ‌های مصنوعی، دریچه‌های قلبی، قلب مصنوعی، کاشتنی‌های بدن، غضروف، کامپوزیت‌های دندانی، عدسی‌های تماسی، عدسی‌های داخل چشمی، اجزای دستگاه‌های اکسیژن‌رسان، دیالیز و تصفیه خون، پوشش مواد فلزی و سرامیکی، قرص‌ها و کپسول‌های دارویی، نخ‌های بخیه، چسب‌ها و… را می‌توان به عنوان نمونه‌ای از کاربرد مواد پلیمری در پزشکی برشمرد.

مقاله حاضر به مناسبت زاد روز حکیم بزرگ بوعلی سینا و روز پزشک به ذکر کاربردهای پلیمرهای مصنوعی از جمله پلی‌اتیلن، پلی‌پروپیلن، پلی‌یورتان‌ها، پلی‌آمیدها، پلی‌آکریلات‌ها، پلی‌تترافلورواتیلن، سیلیکون‌ها پلی‌استال و…، پلیمرهای مصنوعی زیست‌تخریب‌پذیر مانند پلی‌لاکتیک‌اسید، پلی‌گلیکولیک‌اسید، پلی‌کاپرولاکتون و… و پلیمرهای طبیعی در حوزه پزشکی می‌پردازد.

 

پلیمرهای مصنوعی (Synthetic Polymers)

 

پلی‌اتیلن (Polyethylene)

پلی‌اتیلن با وزن مولکولی بسیار بالا (UHMWPE) به دلیل مقاومت سایشی زیاد آن، خزش کم و ضریب اصطکاک پایین به طور گسترده‌ای در کاشتنی‌های ارتوپدی نظیر مفاصل ران و زانو به کار می‌رود. در حال حاضر تحقیقات زیادی در ارتباط با بهبود خواص سایشی UHMWPE با استفاده از عوامل شبکه‌ای کننده خاص نظیر ویتامین E، پرتودهی و تابش پلاسما یا پوشش‌دهی با مواد سرامیکی در حال انجام است. اعتقاد بر این است که ذرات پلی‌اتیلنی جدا شده از کاشتنی، می‌تواند باعث افزایش حجم استخوان گردد.

پلی‌پروپیلن (Polypropylene)

از این پلیمر در پروتزهای مفاصل انگشت و نخ‌های بخیه استفاده می‌شود. مش‌های پلی‌پروپیلنی در ترمیم دیواره شکم در بیماری فتق به کار می‌رود، هر چند که هنوز هم اثرات جانبی این بیماری حل نشده است. علاوه بر این غشاهای پلی‌پروپیلنی در جداسازی سلول‌ها مورد تحقیق و بررسی قرار گرفته‌اند.

پلی‌آکریلات‌ (Polyacrylate)

از جمله خصوصیات PMMA، عبوردهی بسیار بالای نور (۹۲%)، شاخص پراکندگی بالا، خواص ترشوندگی عالی، زیست‌سازگاری بالا و سختی و شکنندگی بیش‌تر در مقایسه با سایر پلیمرها باید اشاره کرد. این پلیمر در لنزهای تماسی سخت (Hard Contact Lenses)، لنزهای داخل چشمی (Intraocular Lenses) سیمان استخوان و مواد ترمیمی دندان استفاده می‌شود. در این میان پلی‌سیانوآکریلات‌ها به جهت خواص چسبندگی مناسب اهمیت زیادی یافته‌اند. برخی از آن‌ها در ترکیب چسب‌های زیستی برای ترمیم اجزای کره چشم مثل قرنیه و شبکیه بررسی شده‌اند. فیلم‌های پلی‌سیانوآکریلاتی نیز به عنوان پوست مصنوعی در پیوندهای عروقی و درمان سوختگی‌های شدید مورد آزمایش قرار گرفته‌اند. پلی‌آکریلونیتریل سمی و اشتعال‌زا بوده و بنابراین استفاده از آن در پزشکی رایج نیست. پلی‌آکریل‌آمید غیر سمی است ولی مونومر آن می‌تواند بر روی سلول‌های عصبی تأثیر منفی بگذارد. این پلیمر جاذب آب بوده و می‌تواند تشکیل ژل دهد. از پلی‌آکریل‌آمید در تهیه لنزهای تماسی نرم، حجم‌دهنده‌ها، ماهیچه‌های مصنوعی، بیوسنسورها، سامانه‌های رهایش داروی هوشمند و… استفاده شده است.

پلی‌استایرن  (Polystyrene)

از جمله خصوصیات پلی‌استایرن می‌توان به شفافیت خوب و بی‌رنگ بودن، راحتی ساخت، پایداری حرارتی، وزن مخصوص پایین و مدول بالا اشاره کرد. این پلیمر به صورت عمومی در ساخت ظروف کشت سلول، بطری‌های استوانه‌ای، محفظه‌های خلأ و فیلترهای قیف‌دار کاربرد دارند. آکریلونیتریل بوتادی‌ان استایرن (ABS) در ست‌های تزریق و دیالیز خون، انبرک‌ها (بست‌ها)، کیت‌های تشخیصی و… استفاده می‌شود.

پلی‌وینیل کلراید (Polyvinyl Chloride)

ماده‌ای بسیار پرمصرف و مقاوم در برابر آب و آتش به شمار می‌رود. این پلیمر در تهیه ست تزریق خون، ست سرم و… کاربرد دارد.

پلی‌وینیل‌الکل (Polyvinyl Alcohol)

یکی از پرمصرف‌ترین پلیمرهای محلول در آب است و مونومر آن در حالت پایدار وجود ندارد. مزایای این هیدروژل زیست‌سازگاری بالا، عدم سمیت، عدم سرطان‌زایی، سادگی تهیه، دارا بودن محیط آب‌دار و توانایی محافظت از سلول‌ها، داروها، پپتیدها و پروتئین‌ها، توانایی رساندن مواد غذایی به سلول‌ها و انتقال محصولات ایجاد شده توسط آن‌ها امکان اصلاح به کمک لیگاندهای چسبندگی سلولی. محققان بسیاری از PVA جهت تهیه غضروف مصنوعی، منیسک زانو یا دیسک بین مهره‌ای بهره برده‌اند. ترکیب مواد زیادی با پلی‌وینیل الکل برای کاربردهای پزشکی بررسی شده است. پلی‌وینیل‌الکل و پلی‌آکریلیک‌اسید در سامانه‌های حساس به pH، پلی‌وینیل‌الکل و ژلاتین جهت تهیه پچ یا غشا، پلی‌وینیل‌الکل و ابریشم جهت ساخت نخ بخیه، پلی‌‌وینیل‌الکل و پلی‌وینیل ‌پیرولیدین در مهندسی بافت، ترکیب پلی‌وینیل‌الکل با کلاژن و غشاء آمنیون در تهیه قرنیه مصنوعی، پلی‌وینیل‌الکل و نشاسته به عنوان غشا دیالیز و ترکیب پلی‌وینیل‌الکل با پلی‌اتیلن‌گلیکول به منظور کاهش جذب سطحی پروتئین از آن جمله است. استفاده از ترکیب پلی‌وینیل‌الکل و کیتوسان تا کم‌تر از ۵۰% PVA در اصلاح سطح کاتترهای پلی‌یورتانی باعث چسبندگی پروتئین‌ها و فعالیت میکروب‌ها می‌گردد. همچنین از این کامپوزیت در کاربردهای پانسمان زخم نیز می‌توان بهره برد. ترکیب پلی‌وینیل‌الکل و پلی‌کاپرولاکتون در کاهش تجمع سلول‌های التهابی مؤثر بوده است. از ترکیب PVA و گلیسرول به منظور افزایش خون‌سازگاری بهره برده شده است که طی آن با افزایش گلیسرول در ترکیب، به دلیل ممانعت از تماس مستقیم PVA با خون، چسبندگی و جذب پلاکت‌ها به سطح کاهش می‌یابد. از جمله مشکلاتی که محققان در استفاده از پلیمرهای زیست‌تخریب‌پذیر آب‌گریز نظیر پلی‌کاپرولاکتون یا پلی‌لاکتیک‌-گلیکولیک اسید اشاره نموده‌اند شناور ماندن ساختار پلیمر در محیط کشت سلولی است. علاوه بر این به دلیل عدم جذب محیط کشت توسط داربست، قسمت زیادی از تخلخل‌ها خالی خواهند ماند. این در حالی است که دست‌یابی به توزیع یکنواخت سلول‌های کاشته‌شده درون داربست اهمیت زیادی دارند. یکی از روش‌های غلبه بر این مشکل استفاده از پلیمرهای آب‌دوستی نظیر پلی‌وینیل‌الکل یا پلی‌اتیلن‌اکساید در ترکیب است. از کامپوزیت پلی‌وینیل الکل و پلی‌لاکتیک‌-گلیکولیک‌اسید و کیتوسان داربست زیست‌تخریب‌پذیری برای مهندسی بافت ساخته شده است که زیست‌سازگاری مناسبی از خود نشان داده است. همچنین از ترکیب PVA-PLGA نانوذراتی برای رهایش داروی پاکلیتاکسل جهت درمان گرفتگی شریان بهره برده شده است.

پلی‌آمید (Polyamide)

این مواد که به نایلون‌ معروف هستند در نخ‌های بخیه، رگ‌های مصنوعی استفاده می‌شوند که از جمله مهم‌ترین کاربردهای موفق این مواد در زمینه پزشکی هستند. نایلون‌ها جاذب‌ رطوبت هستند و استحکام خود را در موقع کاشت در محیط درون‌تن از دست می‌دهند. مولکول‌های آبی که به ناحیه بی‌شکل آن حمله می‌کنند به عنوان نرم‌کننده عمل می‌نمایند. آنزیم‌های پروتئولیتیک نیز از طریق حمله به گروه آمید در هیدرولیز پلیمر نقش مهمی دارند. پروتئین‌ها نیز حاوی گروه پپتیدی (آمید) در طول زنجیره‌های مولکولی خود هستند و آنزیم‌های پروتئولیتیک می‌توانند به آن‌ها حمله کنند.

پلی‌اتیلن‌ترفتالات (Polyethylene Terephthalate)

پلی‌استرهایی مانند پلی‌اتیلن‌ترفتالات (PET) به دلیل خواص فیزیکی و شیمیایی بی مانند، به طور گسترده‌ای در کاربردهای پزشکی مورد استفاده قرار می‌گیرند. PET پلی‌استریست که از آن در ساخت پیوند رگ مصنوعی، نخ‌های بخیه و توری‌ها، دریچه‌ها محفظه کاتتر و فیلتر استفاده می‌گردد.

پلی‌استال (Polyoxymethylene)

یک پلی‌اتر است و معمول‌ترین پلی‌استال‌ها از فرم‌آلدئید به دست آمده که به نام پلی‌اکسی‌متیلن شناخته می‌شود. پلی‌استال معمولاً چقرمه، محکم، با مقاومت بالا نسبت به خزش، خستگی و مواد شیمیایی هستند و ضریب اصطکاک کمی دارد. از پلی‌استال‌ها در تحقیقاتی نظیر تهیه مفاصل زانو یا ران و لت دریچه قلب مصنوعی استفاده شده است.

پلی‌سولفون  (Polysulfone)

پلی‌سولفون خانواده‌ای از پلیمرهای گرمانرم است. از این مواد به دلیل چقرمگی و پایداری در دماهای بالا شناخته می‌شوند. پایداری حرارتی بالا به دلیل گروه‌های جانبی حجیم، بی‌شکل، پایداری شیمیایی، عدم پایداری در مقابل حلال‌های قطبی نظیر کتون‌ها، شفافیت، استحکام بالا، انعطاف‌پذیری و مقاومت ضربه خوب به دلیل حضور اکسیژن و سولفور در زنجیر اصلی مولکولی، خزش کم و استحکام کششی بالا از خصوصیات مهم این پلیمر محسوب می‌شود. تهیه غشاها از پلی‌سولفون با خواص تکرارپذیر و اندازه تخلخل قابل کنترل به سادگی امکان‌پذیر است. از این غشاها در کاربردهای جداسازی خون (همودیالیز) آب یا مواد زائد استفاده می‌شود. همچنین به دلیل مقاومت حرارتی بالا، پلی‌سولفون در کاربردهایی که نیاز به سترون شدن تحت بخار و اتوکلاو باشد، گزینه مناسبی محسوب می‌شود.

پلی‌کربنات (Polycarbonate)

این گروه از مواد در مواقعی که نیاز به مقاومت ضربه بالا، مقاومت حرارتی زیاد و خواص نوری مناسب باشد، به کار می‌روند. در عدسی‌ها، عینک‌های طبی و ایمنی و… از پلی‌کربنات‌ها استفاده می‌شود. پلی کربنات‌ را می‌توان با اکثر روش‌ها (گاز اتیلن اکساید، پرتو گاما و اتوکلاو) سترون نمود. از این ماده در تهیه محفظه‌های مقاوم برای غشاهای دستگاه همودیالیز، دستگاه اکسیژن‌رسان، کاتترها، لوله‌ها، وسایل در تماس با خون و تزریق، بهره برده می‌شود.

سیلیکون (Silicone)

مهم‌ترین خواص سیلیکون‌ها شامل پایداری حرارتی، آب‌گریزی، مقاومت بالا در برابر اکسیژن، اَزُت و نور خورشید، انعطاف‌پذیری، عایق الکتریکی، ضد چسبنده، غیر سمی، واکنش شیمیایی کم و نفوذپذیری بالای گاز است. سیلیکون‌های تک‌جزئی با جذب رطوبت از محیط، شکل می‌گیرند. به دلیل خصوصیات این ماده، از آن در تهیه وسایل کمک شنوایی جهت جلوگیری از نفوذ اصوات استفاده می‌شود. در کاربردهای پزشکی به طور وسیعی از ترکیبات سیلیکونی بهره برده می‌شود. به عنوان مثال در لوله‌های دیالیز و انتقال خون، ریه‌های مصنوعی، کاتترها، کاشتنی‌های مصنوعی در بدن، وسایل جلوگیری از بارداری، گونه مصنوعی، عدسی‌های مصنوعی و… کاربرد دارند. در گذشته از سیلیکون برای تهیه مسدودکننده دریچه قلب مصنوعی توپ و قفس استفاده می‌شد که به دلیل تورم آن و تغییر اندازه کاربرد آن در این زمینه کاهش یافت.

پلی‌دی‌متیل‌سیلکوسان مهم‌ترین و پرمصرف‌ترین پلی‌سایلوکسان در پزشکی است که از جمله خواص آن طول بسیار بالا در دمای محیط، عایق الکتریکی بسیار خوب، مقاومت در برابر ازن، نفوذپذیری بسیار بالا در برابر گازها، مقاومت شیمیایی بالا، ضریب اصطکاک کم ۷۵% و انعطاف‌پذیر بالا، خون‌سازگاری بالا، سمیت بسیار کم، پایداری حرارتی کم، پایداری طولانی مدت در شرایط بدن، آب‌گریزی بالا. از این پلیمر در پمپ‌های خون، پوشش ضربان‌سازهای قلبی، بیرون‌کش‌های آب، عدسی تماسی، پوست مصنوعی، دستگاه‌های اکسیژن‌دهنده، چسب‌‌های پزشکی، مفاصل انگشت‌ها، حلزون‌های شنوایی، کاتترها، پروتزهای زیبایی صورت و بینی و… بهره برده می‌شود.

پلی‌یورتان (Polyurethane)

این گروه از مواد دارای استحکام کششی بالا، چقرمگی، مقاومت با سایش، مقاومت در برابر تخریب و زیست‌سازگاری هستند که مجموعه این خواص آن‌ها را به یکی از مهم‌ترین گروه‌ها برای استفاده در ساخت وسایل قابل کاشت در بدن تبدیل نموده است. پلی‌یورتان‌ها در کاشتنی‌های طولانی و کوتاه مدت زیست‌پایدار و زیست‌تخریب پذیر با محصولات تخریب زیست‌سازگار مورد استفاده قرار می‌گیرند. این مواد به دلیل داشتن بار سطحی منفی، آب‌گریزی و مورفولوژی مناسب (از جهت صافی سطح) خون‌سازگاری بالایی دارند و این امر باعث شده است که از آن‌ها در ساخت کاشتنی‌های قلبی-عروقی استفاده شود. از مهم‌ترین کاربردهای این مواد می‌توان به بطن چپ مصنوعی قلب، بالون‌های داخل آئورتی، پوشش لید ضربان‌سازها، دریچه‌هایقلب مصنوعی، غشاهای همودیالیز و … اشاره نمود. طیف گسترده خواص فیزیکی، شیمیایی و مکانیکی پلی‌یورتان‌ها سبب شده است که این گروه از پلیمرها کاربردهای وسیعی در مهندسی بافت و سامانه‌های نوین رهایش دارو نیز بیایند.

پلیمرهای زیست‌تخریب‌پذیر  (Biodegradable Polymers)

پلی‌لاکتیک‌اسید و پلی‌گلیکولیک‌اسید  (Polylactic Acid, Polyglycolic acid)

پلی‌استرهای خطی لاکتیک و گلیکولیک اسید برای بیش‌تر از سه دهه است که در کاربردهای مختلف پزشکی استفاده می‌شوند. در زمینه رهایش کنترل شده داروها، تحقیقات زیادی به آن‌ها اختصاص داده شده است. این پلیمرها برای انتقال استروئیدها، عوامل ضد سرطانی، پپتیدها و پروتئین‌ها، آنتی‌بیوتیک‌ها و واکسن‌ها به کار می‌روند. ترکیبات قابل تزریق حاوی میکرواسفری‌های پلیمری لاکتید و گلیکولیک در سال‌های اخیر توجه زیادی را به خود جلب نموده‌اند.

پلی‌کاپرولاکتون (Polycaprolactone)

بررسی زیست‌سازگاری این پلیمر آن را به عنوان یک پلیمر غیر سمی و بافت سازگار با محصولات تخریبی زیست‌سازگار معرفی نموده‌ است. در مواردی از PCL به عنوان بست‌های تخریب‌پذیر جهت نزدیک نمودن لبه‌های زخم استفاده می‌شود. از پلی‌کاپرولاکتون DL در تهیه پلی‌یورتان‌های زیست‌تخریب‌پذیر بهره برده شده است که پلیمر مذکور برای استفاده در مهندسی بافت غضروف و پوست بررسی شده است.

پلی‌ارتواسترها (Polyorthoester)

این مواد دسته دیگری از پلیمرهای زیست‌تخریب‌پذیر هستند که برای کاربردهایی نظیر رهایش دارو در چشم، درمان سوختگی‌ها، کنترل درد پس از عمل و کاربردهای ارتوپدی آزمایش شده‌اند. پلی‌ارتواستر در مقایسه با پلی‌لاکتیک اسید سبب افزایش رشد استخوان می‌گردد.

پلیمرهای طبیعی  (Natural Polymers)

پلیمرهای طبیعی پلیمرهایی هستند که توسط سامانه های بیولوژیکی مانند میکروارگانیسم ها، گیاهان و حیوانات تولید می‌شوند. پلیمرهای طبیعی مصارف ریادی دارند که از چمله آن ها می‌توان به چسب زخم، ماده جاذب، تهیه لوازم آرایشی، رهایش دارو داربست‌های پزشکی، نخ‌های بخیه قابل جذب، پانسمان‌ها، و زخم‌پوش‌ها، ترمیم بافت دهان، غضروف، تاندون، لیگامنت، عصب، رگ، افزایش بافت نرم، انتقال دارو، کاشتنی‌های دندانی، پوست مصنوعی، بازسازی استخوان، عدسی‌های تماسی، رهایش کنترل شده دارو و کپسوله کردن تولیدات نساجی اشاره کرد. از آنجایی که پلیمرهای طبیعی در مقایسه با پلیمرهای صنعتی سازگاری محیطی بهتری دارند تلاش‌های بیش‌تری برای کاهش قیمت آن‌ها باید صورت بگیرد، زیرا پلیمرهای طبیعی موجود دو تا پنج برابر، گران‌تر از پلیمرهای مصنوعی می‌باشند.

آزمون‌های زیست سازگاری

(in vitro)  آزمون‌های خارج بطنی

(Cytotoxicity)  سمیت

(Blood Compatibility) خون سازگاری

(in vivo) آزمون‌های داخل بطنی

کاشت کوتاه‌مدت

کاشت بلندمدت

 آزمون‌های خارج بطنی مقدمه و پیش‌نیاز آزمون‌های داخل بطنی هستند.

 

Axx

Ax

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com 📧