وضعیت ورود
درحال حاضر شما وارد سایت نشده اید.
آمار بازدیدکنندگان
  • کاربران حاضر: 0
  • بازدید امروز: 370
  • بازدید ماه: 71,632
  • بازدید سال: 908,635
  • کل بازدیدکنند‌گان: 196,666
قیمت روز

گرمانرم

کاربرد پلاستیک‌ها در لوازم خانگی بخش سوم: پلیمر پلی‌استایرن با کاربرد عام (GPPS)

ساختمان شیمیایی و برخی از خواص فیزیکی-مکانیکی پلیمرهای PS در زیر آمده است

 

Untitledk

 

پلی‌استایرن (PS)، قریب به یک قرن است که به خوبی شناخته شده است ولیکن ماهیت مولکولی آن تا حدود سال ۱۹۲۰، مشخص نشده بود تا این که در همین سال اشتاودینگر (Staudiger)، ساختار مولکولی این ماده را توصیف کرد. در اواخر دهه ۱۹۳۰، به طور تجاری تولید شد. پلی‌استایرن، یکی از متداول‌ترین رزین‌های ترموپلاستیک آمورف تجاری و اقتصادی است که محدوده وسیعی از خواص متعادل فیزیکی-مکانیکی را داراست و قیمت جذابی هم دارد که نظر فروشندگان و سرمایه‌گذاران را برای تولید به خود جلب می‌کند.

پلی‌استایرن به سه نوع تقسیم‌ می‌شود. ۱) پلی‌استایرن با کاربرد عام (:GPPS: General Purpose Polystyrene)، پلی‌استایرن قابل انبساط (EPS: Expanded Polystyrene)، پلی‌استایرن با مقاومت ضربه‌ای بالا (HIPS: High Impact Polystyrene).

مواد اولیه لازم برای سنتز مونومر پلی‌استایرن، اتیلن و بنزن می‌باشند که در فرآیند سنتز با هم واکنش می‌دهند تا اتیل‌بنزن تشکیل شود که در ادامه فرآیندهای بیش‌تری (دیهروژناسیون) بر روی آن انجام می‌شود تا به مونومر وینیل بنزن یا همان استایرن (Styrene) تبدیل شود، مواد اضافی دیگر، اکریلونیتریل (AN) و لاستیک بوتا‌دی‌ان می‌باشد.

با استفاده از واکنش گرمایی یا کاتالیز شده مونومر استایرن، فرآیند پلیمریزاسیون آن آغاز می‌شود تا پلیمری آمورف تولید شود. برای بخشیدن و ایجاد خواص مطلوب در PS، افزودنی‌های گوناگونی به آن اضافه می‌شود، همانند لاستیک‌ها، نرم‌کننده‌ها، عوامل آزادکننده یا رهاکننده و پایدارکننده‌ها. همچنین در فرمولاسیون‌های بر پایه PS از گروه‌های مختلف افزودنی دیگر همچون رنگین‌سازها، تأخیراندازهای شعله (FRs)، پایدارکننده‌های UV، یا اصلاح‌کننده‌های ضربه، استفاده می‌شود. نوعاً GPPS، به علت شفافیت، صلب و سخت بودن و مناسب بودن با کاربردهای گوناگون انتخاب می‌شود. وقتی که به انعطاف‌پذیری بیش‌تر یا مقاومت ضربه‌ای زیاد نیاز باشد، از HIPS استفاده می‌شود. این ماده شامل پلی‌بوتا‌دی‌ان به عنوان عامل کوپلیمریزاسیون به منظور افزایش چقرمگی می‌باشد که سبب مات و کدر شدن رنگ محصول می‌گردد.

مزایای پلی‌استایرن

  • شفافیت بالا
  • جلا و برق بالا
  • انواع تأیید شده توسط اداره غذا و داروی آمریکا در دسترس می‌باشند.
  • از طریق تمام روش‌های فرآیند نمودن ویژه بسپارهای گرمانرم، می‌توان آن‌ها را فرآیند نمود و شکل داد.
  • قیمت پائینی دارند
  • پایداری ابعادی خوب
  • صلبیت و عدم انعطاف‌پذیری خوب

محدویدیت‌های پلی‌استایرن

  • قابل اشتعال ولی انواع FR از آن در دسترس می‌باشند.
  • مقاومت ضعیف در برابر حلال و از طریق بیش‌تر مواد شیمیایی تحت حمله قرار می‌گیرند.
  • هموپلیمرها شکننده می‌باشند.
  • در معرض ایجاد ترک‌ها و شکاف‌های ناشی از تنش و محیط عمل قرار دارند.
  • پایداری حرارتی ضعیف

کاربردهای نوعی پلی‌استایرن

  • ظروف مصرفی تنها، همانند بشقاب‌ها، لیوان‌ها، فنجان‌ها
  • کالاهای مقاوم مصرفی همانند ظروف خانگی و قوطی‌ها یا مخازن نگه‌دارنده ویژه مواد آرایشی
  • ورقه‌های جامد اکسترود شده، ورقه‌های فوم شده یا جهت داده شده در دو سو برای شکل دادن حرارتی، از آمیزه‌های مخلوط شده با کوپلیمر دسته‌ای استایرن‌بوتادی‌ان رابر در جاهایی که شفافیت و چقرمگی مطلوب است استفاده می‌شود.
  • ورق‌های پلاستیکی در نقش پرده مقابل دوش حمام یا سطح قابل چاپ به راحتی رنگ می‌شود.
  • کالاهای بسته‌بندی فوم شده ویژه مواد غذایی همانند سینی‌ها، مخازن قابل تعویض، عایق‌بندی ساختمان و مواد به کار رفته در مصالح ساختمانی و صنعت ساختمان
  • کالاهایی که در تماس مستقیم با مواد غذایی هستند و از PS جهت داده شده ساخته شده اند، همانند قوطی‌های نگه‌داری کلوچه و سبدها یا سینی‌های سبزیجات
  • قطعات قالب‌گیری شده و اجزای داخلی یخچال‌ها و لوازم خانگی دیگر، کالاهای مقاوم مصرفی همانند ظروف خانگی

Untitleda

 

پلی‌استایرن با کاربرد عام (General Purpose Polystyrene: GPPS)

گزارش‌های بسیاری درباره ظهور پلی‌استایرن در اوایل سال ۱۸۳۹ میلادی وجود دارد. اما این پلیمر ابتدا در سال ۱۹۳۱در مقیاس تجاری به وسیله شرکت BASF و در سال ۱۹۳۸ توسط شرکت Dow تولید شد. مواد قالب‌گیری پلی‌استایرن، موادی سخت و شفاف با درخشندگی زیاد هستند که معمولاً به آن‌ها پلی‌استایرن با کاربرد عام اطلاق می‌شود. اما اصطلاحات پلی‌استایرن استاندارد، پلی‌استایرن نرمال و پلی‌استایرن شفاف یا هموپلیمر پلی‌استایرن نیز برای این پلیمر کاربرد دارد.

مواد قالب‌گیری پلی‌استایرن در دماهای کم‌تر از ۱۰۰ درجه سانتی‌گراد جامد شده و موادی شبیه شیشه با استحکام مکانیکی مناسب، خواص دی‌الکتریکی خوب و مقاوم در برابر بسیاری از مواد شیمیایی ایجاد می‌کنند که کاربردهای بسیاری دارند. سهولت فرآورش، صلبیت، پایداری ابعادی و وضوح از قابلیت‌های این پلاستیک درخشان، شفاف و نیمه‌بلوری است. اما مقاومت به ضربه کم پلی‌استایرن کاربردهای آن را محدود می‌کند.

پلی‌استایرن در بالای دمای نرم شدن، مذاب است و به آسانی به وسیله روش‌هایی از قیبل قالب‌گیری تزریقی یا اکستروژن فرآیند می‌شود. مقادیر کم‌ روان‌کننده‌های داخلی و خارجی به این پلیمر به عنوان کمک‌فرآورش اضافه می‌شوند. افزودن عوامل ضد بار ساکن، پایدارکننده‌های فرابنفش، الیاف شیشه یا رنگ‌دهنده‌ها نیز به آن متداول است.

استایرن به روش گرمایی یا با آغازگرهای رادیکال آزاد به سهولت به پلی‌استایرن تبدیل می‌شود. پلی‌استایرن تجاری بیش‌تر به دلیل ارزانی روش با استفاده از پلیمر شدن رادیکالی تولید می‌شود. علت این امر، عدم نیاز به خلوص بسیار زیاد مونومرها و حلال‌هاست. برای مثال قیمت تبدیل مونومر استایرن به پلیمر با استفاده از پلیمر شدن آنیونی حدود ۵۰% بیش از پلیمر شدن رادیکالی است که این تفاوتِ قیمت به دلیل هزینه خالص کردن مونومر است. به علت استفاده از پلیمر شدن رادیکالی برای تهیه پلی‌استایرن، همه پلی‌استایرن‌های تجاری اندکی شاخه دار هستند. علت شاخه دار شدن واکنش انتقال زنجیر به پلیمر است و مقدار آن هنگام استفاده از آغازگرهای پروکسیدی بیش‌تر است. عامل محدودکننده در بهره‌برداری تجاری از پلی‌استایرن، واکنش‌پذیری زیاد و گرمای پلیمر شدن قابل ملاحظه آن است. سرعت پلیمرشدن استایرن بی‌نهایت زیاد و با آزاد شدن گرمای قابل توجهی همراه است. این امر، مانع جدی برای تولید تجاری پلی‌استایرن بود. بسیاری بر این باورند که پلیمر شدن استایرن در مقیاس زیاد ممکن است به واکنش غیر قابل کنترل و خطرناکی منجر شود. فرآیند پلیمر شدن مونومر استایرن، گرما دادن آن در ظروف حجیم بود و محدودیت عمده این روش حذف گرما از مذاب بسیار گران‌رو است. دماهای زیاد (بیش‌تر از ۳۰۰ درجه سانتی‌گراد) در راکتورهایی با وزن زیاد فراهم شده است و تخریب گرمایی پلی‌استایرن حاصل روی می‌دهد. این مشکل بعدها با نصب لوله‌های تبادل گرما در محیط واکنش بر طرف شد.

اولین روش مورد استفاده توسط شرکت Dow بر پایه پلیمر شدن توده به نام‌ فرآیند قوطی شناخته شد که شامل قوطی‌های فلزی ۱۰ گالنی حاوی مونومر استایرن بود. این قوطی‌ها در حمام گرما با افزایش تدریجی دما برای چند روز گرم می‌شدند. پس از طی شدن این زمان پلی‌استایرن (تقریباً با تبدیل ۹۹%) از قوطی برداشته و به پودر جریان آزاد (Free-glowing Powder) خرد می‌شد.

توسعه فناوری ساخت استایرن و پلی‌استایرن با وقوع جنگ جهانی دوم اوج گرفت. در طول این زمان کمبود لاستیک، توسعه لاستیک سنتزی بر پایه استایرن را افزایش داد. در اواخر جنگ جهانی دوم سالانه ۱۸۰،۰۰۰ تن مونومر استایرن تولید شد که بیش‌ترین مقدار آن برای تهیه لاستیک سنتزی بونا (Buna) S (به نام GRS نیز شناخته می‌شود که GR مربوط به لاستیک دولتی و S مربوط به استایرن است) استفاده شد.

در طول جنگ جهانی دوم، پژوهش ها روی پالایش و بهبود فرآیندهای موجود انجام شد. برای مثال اگر لاستیک به روشی پلیمر می‌شد که هیچ مونومری در آن باقی نمی‌ماند، مولکول‌های شاخه‌داری تشکیل می‌شدند که ژل شده و برای فرآورش لاستیک مشکل ایجاد می‌کردند. برای حل این مسئله اجازه داده شد، واکنش فقط تا ۷۲% تبدیل پیش رود و برای کنترل وزن مولکولی، اصلاح‌کننده تیول و عامل انتقال زنجیر اضافه شد.

هم‌چنین پلیمر شدن دوره القایی (Inductiom Period) دارد که از یک پیمانه تا پیمانه (batch) دیگر تغییر می‌کرد. در طول دوره القا به نظر می‌رسد که هیچ اتفاقی نیفتاده است و ناگهان واکنش متوقف می‌شود. پژوهش‌ها در دانشگاه (Illinois) نشان داد که دلیل این امر اسیدهای چرب مختلف موجود در صابون‌های متفاوت مورد نیاز برای فرآیند پلیمریزاسیون است. هم‌چنین صابون‌های یاد شده باعث می‌شدند، محلول در طول بازیافت مونومر باقی‌مانده، اسفنجی شود. این مسئله منجر به توسعه کف‌زادیی‌های سیلیکونی شد.

خواص لاستیک نوع بونا S به مقدار استایرن موجود در لاستیک بستگی دارد. برای تعیین خواص مهم است که چه مقدار استایرن وارد سامانه می‌شود. Baker این مسئله را به وسیله توسعه روشی برای تعیین مقدار استایرن با استفاده از ضریب شکست محلولی لاستیک حل کرد.

قبل از سال ۱۹۴۱، آلمان فناوری فنی و صنعتی‌تری را نسبت به آمریکا برای فرآیند تولید مونومر استایرن، فرآیند الاستومر استایرن-بوتاد‌ان و پلیمر شدن جرمی استایرن پایه‌گذاری کرد. اولین تولید فنی پلی‌استایرن در آلمان در سال ۱۹۳۰ شروع شد، در حالی که اولین پلی‌استایرن در آمریکا ۸ سال بعد توسط شرکت Dow در تولید شد.

در آغاز شرکت Dow دارای محدودیت‌های فنی متعددی برای تولید و فرآورش پلی‌استایرن بود. برای مثال، پلیمر به کمک فرآیند تولید بی‌نهایت کندی ساخته می‌شد. وزن مولکولی زیاد و توزیع وزن مولکلولی پهنی داشت که قالب‌گیری تزریقی را مشکل می‌کردو پژوهش‌گران شرکت Dow بلافاصله روشی برای دست‌یابی به وزن مولکولی کم‌تر توسعه داده و روان‌کننده‌های خاصی برای بهبود قابلیت فرآورش افزودند. به این ترتیب پلی‌استایرن با کاربرد عام ساخته شد که به سرعت شهرت پیدا کرد و ساده‌ترین گرمانرم قالب‌گیری بود.

سایر موانع فنی برای پلیمر شدن پلی‌استایرن، کنترل گرمازایی پلیمر شدن و تولید پلی‌استایرن بی‌رنگ بود. در حالی که ساخت استایرن در روزهای ابتدایی در شرکت Dow به نظر ساده و راحت می‌رسید، سه ناخالصی عمده در مونومر استایرن به جزء اتیل بنزن باقی مانده وجود داشت که عبارت بودند از فنیل استیلن (که به عنوان بازدارنده برای پلیمر شدن استایرن عمل می‌کند)، دی‌وینیل‌بنزن (که موجب بسته شدن و آلوده شدن ستون تقطیر برای جداسازی استایرن از مواد اولیه آن، اتیل بنزن شد) و سولفور (که موجب بی‌رنگ شدن پلی‌استایرن شد).

در سال ۱۹۳۸ میلادی، طرح خردکردن (crash) منجر به اولین پیمانه‌های پلی‌استایرن قابل فروش شد که در قوطی‌های فلزی تولید و پلی‌استایرن با خلوص زیاد ایجاد شد. این قوطی‌ها با استایرن پر شده و در حمام‌های آب گرم فرو برده می‌شدند. به این ترتیب استایرن به روش گرمایی پلیمر می‌شد. فرایند بسیار کند و پردردسر و گرمازایی پلیمرشدن در مرکز هر قوطی بیش‌ترین مقدار بود. پس از اتمام پلیمر شدن، پلی‌استایرن برای پخش نواحی با وزن مولکولی متفاوت ساییده و مخلوط شد.

اگرچه فرآیند قوطی خیلی کند بود، قوطی‌ها و حمام‌های گرمایشی بیش‌تری به منظور افزایش آسان بازده تولید اضافه شد. هم‌چنین با افزودن مقداری کاتالیزور و پروکسید به مونومر استایرن بازده تولید به نحو چشم‌گیری افزایش یافت و در حقیقت این تغییر منجر به دو برابر شدن ظرفیت کارخانه Dow شد. زیرا سرعت پلیمر شدن سریع‌تر شد و کنترل گرمازایی نیز ممکن بود. در حالی که آمریکا با فرآیند قوطی در حال پیش‌رفت بود، آلمان در حال توسعه فرآیندی پیوسته برای پلیمرشدن جرمی استایرن بود.

در دهه ۱۹۳۰ میلادی، شیمیدان آلمانی به نام فاربن فرآیند برج پیوسته را برای تولید پلی‌استایرن گسترش داد. دستگاه پلیمر شدن استایرن در شکل زیر نشان داده شده است. این روش با استفاده از رآکتوری با لوله‌های انتقال گرمای متقاطع، بر مشکلات پلیمر شدن گرمازا غلبه کرد. دمای واکنش به تدریج افزایش می‌یافت و کنترل می‌شد و پلی‌استایرن حاصل با استفاده از مته برداشته می‌شد. این طراحی بعدها به وسیله پیش‌پلیمر شدن در ظرف گرم‌کن و در حال هم‌زدن پیش از فرآیند برج بهبود پیدا کرد.

 qw

aw

پس از جنگ جهانی دوم، شرکت Dow روی ساخت دستگاه‌های پلیمر شدن جرمی پیوسته معروف به فرآیند مخزن لوله‌ای برای ساخت پلی‌استایرن برای ساخت پلی‌استایرن متمرکز شد. این دستگاه شامل دو مخزن لوله افقی نامتحرک بود و نیز سیال انتقال گرما برای کنترل گرمازایی پلیمر شدن جریان داشت (شکل زیر). ظرفیت هر مخزن ۱۸۰۰۰ کیلوگرم مونومر استایرن بود و فرآیند به طور ناپیوسته انجام می‌شد. زمانی که فرآیند به طور متناوب مرتب می‌شد، فرآیند پیوشته بود. زمانی که فرآیند به طور متناوب مرتب می‌شد، فرآیند پیوسته بود. زمانی که درصد تبدیل استایرن در مخزن ۱ افزایش می‌یافت، پمپ پلیمری خاصی، پلی‌استایرن مذاب را در دمای ۲۲۰ تا ۲۴۰ به ته مخزن دریافت‌کننده هدایت می‌کرد. سپس پلیمر شدن در مخزن ۲ شروع می‌شد. ته مخزن دریافت‌کننده تحت خلأ بود تا مواد فرار از قبیل مونومر واکنش نکرده، دیمرها، تری‌مرها و سایر الیگومرها تخلیه شوند. همیشه پلی‌استایرن در مخزن دریافتی وجود داشت به طوری که فرآیند اکسترودر و قرص شدن به شکل فرآیندی پیوسته انجام می‌شد. گرمازایی در فرآیند شرکت Dow، بیش‌تر گرمای مورد نیاز برای تولید پلی‌استایرن مذاب آماده برای قرص شدن را تأمین می‌کرد.

این واحدها به دلیل سطح انتقال گرمای بسیار زیاد و کارایی سیال انتقال گرما بسیار موفق بودند.

Untitledp

سال‌ها بعد روش‌های دیگری برای پلیمر شدن استایرن از قبیل پلیمر شدن تعلیقی به وسیله مواد شیمیایی کوپرس (Koppers) توسعه پیدا کرد که ابتدا در دهه ۱۹۴۰ معرفی شد و سپس در دهه ۱۹۵۰ رشد سریعی یافت. فرآیند پلیمر شدن تعلیقی هنوز هم برای تولید پلی‌استایرن به کار می‌رود. اگرچه به طور گسترده با فنون اقتصادی‌تری از جمله پلیمر شدن جرمی پیوسته جای‌گزین شده است.

جالب آن که پلی‌استایرن تولیدی به وسیله پلیمر شدن تعلیقی به ویژه کوپرس، دمای واپیچش گرمایی (HDT) بیش‌تری از پلی‌استایرن شرکت Dow داشت. این امر به مقادیر قابل اندازه‌گیری دی‌مرها و تری‌مرهای باقی‌مانده در محصول شرکت Dow به دلیل آغازگری گرمایی و عدم وجود آن‌ها در فرآیند تعلیقی آغاز شده با پروکسید مربوط بود.

فرآیند پلیمرشدن تعلیقی مزایای بسیاری نسبت به فرآیندهای رقابتی دارد. در این فرآیند، کنترل عالی دمای پلیمر شدن و محیط واکنش با گران‌روی کم‌تر امکان‌پذیر است. هم‌چنین در این روش پلی‌استایرن قابل انبساط و ضربه‌پذیر تولید می‌شود. پلی‌استایرن با کاربرد عام به وسیله پلیمر شدن در محلول در فرآیندی پیوسته به کمک آغازگر پروکسیدی تهیه می‌شود. پلیمر شدن تعلیقی نیز برای محصولاتی استفاده می‌شود که در آن‌ها شکل کروی کوچکی مورد نیاز است.

پلی‌استایرن با کاربرد عام، پلیمری ضربه‌پذیر است که با وارد کردن الاستومری که خواص ضربه بیش‌تری نسبت به هموپلیمر دارد، اصلاح شده است. الاستومرهای تجاری مورد استفاده وزن مولکولی ۲۶۰،۰۰۰-۱۸۰،۰۰۰ دارند و برای توقف جریان سرد با زنجیری بلند شاخه‌دار شده‌اند. متداول‌ترین لاستیک به کار رفته پلی‌بوتا‌دی‌ان درصد سیس متوسط و زیاد است. پلی‌بوتا‌دی‌ان با درصد سیس زیاد مقاومت گرمایی نسبتاً زیادی دارد که نسبت به فرمول‌بندی پلی‌استایرن ضربه‌پذیر در قیمت و چقرمگی دمای کم دارای برخی مزایاست.

ذخیره‌سازی استایرن باید برای مدت زمان کم در دمای پایین (۲۰ درجه سانتی‌گراد) و در مجاورت بازدارنده پلیمر شدن انجام شود. به منظور جلوگیری از پلیمر شدن زودهنگام مونومر استایرن هنگام نگه‌داری و حمل و نقل، بازدارنده‌های ویژه‌ای از قیبل ۴-ترسیوبوتیل‌کاتکول باید به این پلیمر اضافه شود به طوری که بتوان این ماده را تا هنگام نیاز ذخیره کرد. این ماده بسیار مؤثر و در استایرن محلول است و پیش از پلیمر شدن استایرن نیازی به جداسازی آن نیست. با این حال می‌توان آن را به کمک محلول سودسوزآور به راحتی جدا کرد و سپس استایرن را با کلسیم کلرید خشک کرد. مقدار مصرف بازدارنده بر حسب مدت زمان ذخیره استایرن در شکل آورده شده است.

تجربه نشان داده است، ۴-ترسیوبوتیل‌کاتکول به طور تدریجی به کینون تبدیل می‌شود و به همین علت مقدار آن باید در مخزنذخیره کنترل شود. اثر ۴-ترسیوبوتیل‌کاتکول در مجاورت اکسیژن بیش‌تر است و معمولاً در صنعت سعی بر این است که در مخازن ذخیره استایرن به ازای هر مول  ۴-ترسیوبوتیل‌کاتکول، حدود ۱۰ مول اکسیژن وجود داشته باشد. هم‌چنین بازدارنده‌های پپلیمر شدن برای جلوگیری از تشکیل پلیمر حین تقطیر مونومر استایرن از اتیل بنزن مورد نیاز بودند. این بازدارنده‌ها به وسیله تقطیر یا جذب روی آلومینا برداشته می‌شوند.

as

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

ارتباط MFI با ویسکوزیته

رابطه MFI و ویسکوزیته

در حین تولید محصول پلیمری، تنها پارامتری از جریان شخص فرآیند کننده به آن دسترسی دارد، MFI است. اما MFI اندازه‌گیری تک‌نقطه‌ای ویسکوزیته در دما و سرعت برشی پایین نسبتاً پایین است. از آنجایی که مقادیر دما و سرعت برشی به کار گرفته شده در آزمون MFI اساساً با مقادیری که در فرآیندهای مقیاس بزرگ واقعی که با آن‌ها می‌توان مواجه شد؛ متفاوت است، MFI به طور مستقیم به رفتار فرآیندی مرتبط نمی‌باشد. تا جایی که به فرآورش مربوط می‌شود، هر دو ویسکوزیته‌های برشی بالا و پایین مواد مهم هستند. خواص برشی پایین در کاربردهایی مهم هستند که استحکام مذاب و خمش از قبیل قالب‌گیری دمشی و پوشش‌دهی مورد اهمیت واقع می‌شوند. از طرف دیگر خواص برشی بالا به کاربردهایی مرتبط هستند که پایداری مذاب، شکست مذاب و تولید حرارت مهم هستند. MFI اغلب به عنوان یک پارامتر تعریف شده تجربی در نظر گرفته می‌شود.

رابطه معکوسی بین MFI و ویسکوزیته برشی صفر وجود دارد. مثلاً برای پلی‌اتیلن رابطه زیر وجود دارد:

BB

رابطه بین MFI و ویسکوزیته ذاتی را به صورت زیر ارائه شد که از این طریق رابطه معکوس بین MFI و ویسکوزیته برشی صفر به شرح زیر است:

CC

 

 

با استفاده از این تعریف که 

3

روابط ۳ و ۴ می‌توانند به سادگی از روابط ۱ و ۲ مشتق شوند.

 

4

 

 

 

 

 

 

 

 

 

برای اکثر مذاب‌های پلیمری ترموپلاستیک (فرآورش شده در ناحیه پلاتو ویسکوزیته نیوتنی برشی پایین)، تخمین منطقی خوبی از ویسکوزیته برشی صفر می‌توان از داده‌های MFI از طریق معادله زیر به دست آورد.

8

 

 

9

 

 

 

 

همراهان عزیز می توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

 info@fara-ps.com 📧

اهمیت شاخص جریان مذاب (MFI: Melt Flow Index / MFR: Melt Flow Rate)

شاخص جریان مذاب یک ویژگی از ترموپلاستیک‌هاست که خصوصیات محصول تولیدی را تحت تأثیر قرار می‌دهد. MFI یک عدد کاربردی می‌باشد که سرعت جریان مذاب ترموپلاستیک را بیان می‌کند و معیاری از سیالیت یک ترموپلاستیک و تابعی از وزن مولکولی آن در دما و فشار مشخص است. این آزمایش بر اساس استاندارد ASTM D1238 (ISO 1133) و با استفاده از دستگاه پلاستومتر انجام می‌گیرد. دانستن MFI پلاستیک ها کمک می‌نماید تا بتوان پایه پلیمری را به درستی انتخاب نمود. برای این مهم ابتدا باید نوع پلیمر تشخیص داده شود تا با توجه به آن روش و شرایط آزمون مهیا گردد.

به طور مشخص مقدار گرم یک پلیمر ترموپلاستیک که در اثر فشار حاصل از یک وزنه معین در درجه حرارت مشخص از یک دای به طول mm8 و قطر mm0955/2 در مدت زمان ۱۰ دقیقه عبور نماید را نرخ جریان مذاب آن ترموپلاستیک می‌گویند.

این آزمون برای مواد اولیه (جهت تائید کیفیت مواد) و نیز برای محصول انجام می‌شود. به این صورت که MFI به دست آمده برای محصول مطابق استاندارد، نباید بیش‌تر از ۲۵% با MFI ماده اولیه تفاوت داشته باشد؛ در غیر این صورت فرآیند تولید، نیازمند تنظیمات جدید خواهد بود.

MFI در اصل ویسکوزیته در یک دما و تحت یک بار خاص (این بار می‌تواند از kg5/0 تا  kg6/21 تغییر کند) هست. MFI در واقع میزان سیالیت یا Fluidity پلیمر را اندازه‌ می‌گیرد. در صنعت این طور رواج یافته است که به عنوان مثال وقتی MFI بالاست بدین معناست که ویسکوزیته پلیمر پایین می‌باشد. با افزایش جرم ‌مولکولی سیالیت پلیمر کم ‌می‌شود و در نتیجه میزان خروجی مذاب پلیمری (MFI) نیز کم‌ خواهد شد.

شاخص جریان مذاب با جرم مولکولی و ویسکوزیته رابطه عکس دارد. پلیمر با جرم مولکولی بالاتر، MFI کمتری دارد. هر چه مقدار MFI بیش‌تر باشد، جرم مولکولی پایین‌تر، مذاب پلیمری روان‌تر و ترموپلاستیک در دمای پایین‌تری فرآیند می‌گردد. ولی خواص مکانیکی ترموپلاستیک با MFI بالاتر، ضعیف‌تر می‌باشد. معمولاً مقدار MFI به گرید پلیمر ارتباط داده می‌شود و بر این اساس نوع فرآیند را انتخاب می‌کنند. این آزمایش برای تعیین میزان سهولت قالب‌گیری مواد پلیمری به طریق تزریق و اکستروژن صورت می‌گیرد. به طور کلی ترموپلاستیک با MFI بیش‌تر در قالب‌گیری تزریقی و ترموپلاستیک با MFI کم‌تر در قالب‌گیری دمشی و اکستروژن کار برد دارد.

 

لازم به ذکر است تغییرات زیاد در شاخص جریان مذاب می‌تواند نشانه‌ای از مناسب نبودن مواد اولیه جهت کاربرد مورد نظر باشد. برای پلاستیک‌هایی که دارای وزن مولکولی پایین هستند باید از وزنه‌های پایین استفاده نمود؛ زیرا اعمال وزنه بالا سبب ریزش و خروج ناگهانی مذاب از سیلندر و دای می‌گردد و نتایج حاصله قابل اعتماد نخواهد بود. همچنین اگر برای پلاستیک‌های دارای وزن مولکولی بالا این آزمون با وزنه کم انجام گیرد، به دلیل سیالیت پایین نمونه، مذاب از دای خارج نشده و MFI قابل محاسبه نمی‌باشد.

 

عوامل مؤثر بر MFI:

  • توزیع وزن مولکولی
  • درصد کومونومر
  • درجه شاخه‌ای شدن زنجیر
  • بلورینگی
  • میزان انتقال حرارت در فرآورش ترموپلاستیک

 

کاهش در مقدار MFI، باعث ایجاد موارد زیر می‌شود:

  • افزایش وزن کولکولی
  • افزایشسختی
  • افزایشاستحکام کششی
  • افزایشدر استحکام نقطه تسلیم
  • افزایشمقاومت در برابر خزش
  • افزایشچقرمگی
  • افزایش دمای نرم شدن
  • افزایش مقاومت در برابر تنش ترک
  • افزایش مقاومت شیمیایی
  • کاهش جلا و براقیت
  • کاهش نفوذپذیری

 

سرعت جریان مذاب نسبت عکس با ویسکوزیته مذاب در شرایط آزمون را دارد، اگرچه باید در نظر داشت که ویسکوزیته برای هر ماده‌ای بستگی به نیروی اعمالی دارد. همچنین نسبت‌های بین دو سرعت جریان مذاب برای یک ماده با استفاده از وزن‌های مختلف می‌تواند معیار اندازه‌گیری پهنا توزیع وزن مولکولی باشد.

با اعمال یک وزنه یکسان، هر چه MFI یک نمونه مذاب پلیمری بیش‌تر باشد بدان معناست که ویسکوزیته آن کم‌تر است. هر چه ویسکوزیته کم‌تر باشد، می‌توان نتیجه گرفت که وزن مولکولی آن نمونه پایین‌تر است. لذا می‌توان گفت که MFI ساده‌ترین روش استاندارد برای مقایسه نسبی وزن مولکولی ترموپلاستیک‌هاست.

توجه به این نکته مهم است که وقتی به یک‌ پلیمر آمورف، افزودنی اضافه می‌گردد؛ همیشه میزان MFI اش کاهش پیدا می‌کند اما در پلیمرهای نیمه بلورین در بعضی از مواقع این اتفاق برعکس می‌شود. یعنی به عنوان مثال اگر به ترموپلاستیک PP فیلر اضافه شود، MFI آن نسبت به حالت خالصش بیش‌تر می‌گردد. دلیل این موضوع را بیش‌تر به لغزش زنجیره‌ها روی فیلر ربط می‌دهند. معمولاً برای تالک این اتفاق رخ می‌دهد.

هر چقدر ماده‌ای که تحت آزمون MFI می‌باشد، ساختار شیمیایی ساده داشته باشد و طول زنجیرهایش کوچک باشند مولکول‌ها به راحتی می‌توانند روی هم‌دیگر بلغزند و از دای خارج ‌شوند و در نتیجه میزان MFI بالاتر است. در مقابل هر چه ریزساختار پیچیده‌تر دارای شبکه‌‌های سه بعدی فیزیکی و مولکول‌هایی با زنجیرهای بلند باشند حرکت سخت‌تر و با ممانعت بیش‌تری همراه هست به همین دلیل میزان MFI پایین‌تر می‌شود.

مشابه این تست برای الاستومرها هم تستی وجود دارد تحت عنوان Mooney Viscosity که در این تست رابر را در یک رئومتر Cone and Plate در دمای ثابت و سرعت چرخش ثابت مورد آزمون قرار می‌دهند و میزان جهندگی (resilience) را بعد از یک مدت زمان مشخص (معمولاً ۴ دقیقه) گزارش می‌کنند.

نکته جالبی که در مورد MFI وجود دارد این است که از این تست هیچ نتایجی در مورد ویسکوزیته پلیمر را نمی‌توان به طور مستقیم در حین فرآیند، شبیه‌سازی کرد؛ ولی تست خیلی کاربردی در بخش کنترل کیفیت کارخانجات محسوب می‌شود.

شاخص جریان حجمی

چنانچه شرایط برای اندازه‌گیری شاخص جریان مذاب مناسب نباشد، شاخص جریان حجمی پلیمر را اندازه‌گیری می‌کنند. اگر میزان MFI به دست آمده در چگالی ترموپلاستیک مورد نظر ضرب شود؛ پارامتری با نام MVI (Melt Volume Index/ Melt Volume Rate) حاصل می‌گردد. اخیراً بیش‌تر از داده‌های حجمی نسبت به جرمی استفاده می‌کنند. بدین صورت که طول سیلندر و شعاع آن موجود می‌باشد، پس می‌توان حجم را محاسبه کرد. با حرکت پیستون به سمت پایین این حجم ‌در حال تغییر است که با داده‌های آن می‌توان مقادیر MVR را حساب کرد. توجه به این نکته ضروریست که باید چگالی را به صورت دقیق در دمای مشخص مورد نظر دانست که داده‌ها برای اکثر ترموپلاستیک‌ها موجود است. مزیت روش مذکور این هست که به جای یک داده از چندین داده استفاده می‌شود، پس خطای کم‌تری دارد و همچنین خطاهایی مثل وجود حباب داخل نمونه یا سیلندر نیز کاهش می‌یابد. البته ناگفته نماند که با اطمینان نمی‌توان گفت که این روش نسبت به روش متداول بهتر است؛ چون روش اول بسیار جا افتاده و در اصل خواص توده (bulk) را می‌دهد؛ ولی روش حجمی به داده چگالی وابسته است و بیش‌تر برای کارهای آزمایشگاهی یا بخش کنترل کیفیت کارخانجات که تغییرات دمایی پلیمر رو دقیقاً می‌دانند، مناسب است.

 

جدول ذیل طرح کلی از اثر افزایش MFI بر روی اکثر ویژگی‌های فیزیکی متداول خواص محصول نهایی را نشان می‌دهد.

1

 

کاربردهای نهایی پلی‌اتیلن (Polyethylene) از طریق بررسی MFI

2

کاربردهای نهایی پلی‌پروپیلن (Polypropylene) از طریق بررسی MFI

3


MFI نسبتاً به تغییرات توزیع وزن مولکولی غیر حساس است. اما MWD تأثیر عمیقی در رفتار ویسکوزیته برشی پایین دارد. از این رو MFI در چنین مواردی واقعاً نمی‌تواند ویسکوزیته برشی صفر را حتی با دقت قابل قبول پیش‌بینی کند. بنابراین روش مذکور می‌تواند شامل خطاهای حتی بیش‌تر از ۵۰% باشد. لذا پیش‌بینی ویسکوزیته برشی صفر از MFI باید با نهایت احتیاط انجام شود.

علت عدم ذکر MFI در داده‌برگ‌ (Data Sheet) پلیمرهایی که در حالت مذاب به شدت به رطوبت حساس هستند مثل پلی آمیدها، پلی‌اتیلن‌ترفتالات و… این است که معمولاً MFI این پلیمرها به دلیل شرایط محیط و این که میزان رطوبت از حالت تعادلی بیش‌تر یا کم‌تر باشد، امکان تغییر جرم مولکولی هست و تکرارپذیری قابل قبولی ندارد. معمولاً در این موارد از ویسکوزیته ذاتی (Inherent Viscosity, Intrinsic Viscosity) استفاده می‌شود.

لازم به ذکر است به جای مشخصه MFI که مختص پلاستیک‌هاست، برای PVC مشخصه‌ای به نام K-Value وجود دارد که با جرم مولکولی متناسب است و طبق یک جدول معین به ازای هر K-Value جرم مولکولی مشخص می‌شود. K-Value معیاری از جرم مولکولی PVC است و از میزان ویسکوزیته پلیمر حل شده در یک حلال به دست می‌آید. همچنین شاخص K-Value معیاری است از فرآیدپذیری PVC که از ۲۰ تا ۸۰ متغیر است و هر چه این مقدار بیش‌تر باشد، خواص بهتر و فرآیندپذیری ضعیف‌تر است. با افزایش K-Value، وزن مولکولی و ویسکوزیته PVC افزایش می‌یابد و فرآیندپذیری سخت‌تر می‌گردد. شاخص K-Value در اصل نشأت گرفته از ویسکوزیته ذاتی می‌باشد. عدد K-Value مربوط به ضریبی است که به ویسکوزیته ارتباط دارد و گرید PVC را مشخص می‌کند. در تست ویسکوزیته با روش آبلود این ضریب برای تعیین ویسکوزیته مورد نیاز است.

محدویت‌های آزمون MFI

  • این تست به علت تک نقطه‌ای بودن اطلاعات محدودی را در اختیار می‌گذارد.
  • محدوده دمایی آو: از ۵۰ تا ۴۰۰ درجه سانتی‌گراد
  • میزان بار پیستون: از ۵/۰ تا ۶/۲۱ کیلوگرم

 

همراهان عزیز می توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

 info@fara-ps.com 📧

 

🔎روش‌های پایه شناسایی ترموپلاستیک‌ها

برای تشخیص نوع پلاستیک‌ها روش‌های متعددی وجود دارد. از جمله روش‌های پایه و سریع می‌توان به بررسی شکل ظاهری، بررسی انحلال‌پذیری در حلال‌‌های شیمیایی، تعیین چگالی، تعیین نقطه ذوب، تعیین مقدار pH، آزمون پیرولیز، آزمون رنگ و آزمون شعله اشاره کرد.

بررسی شکل ظاهری:

منظور از شکل ظاهری بیش از هر چیز شفافیت و براقی (صافی)  ظاهری محصول می باشد. اصولاً تمام ترموپلاستیک‌هایی که بافت ساختمان مولکولی آن‌ها به شکل آمورف می باشد مانند PS و PC شفاف و بعضی تا حدودی رنگین (زرد رنگ) می‌باشند. عموماً براقیت سطوح محصولات ترموپلاستیک‌های آمورف نسبت به سایر ترموپلاستیک‌ها بیش‌تر می‌باشد.

بررسی انحلال‌پذیری در حلال‌‌های شیمیایی (Solubility):

تأثیرات مختلف حلال‌های شیمیایی بر روی مواد مختلف پلیمری، روش دیگری برای شناسایی نوع ترموپلاستیک می‌باشد. برای انجام این آزمایش کافی است تا مقداری از ترموپلاستیک مورد نظر را با مقداری از حلال مخصوص در یک لوله آزمایش مخلوط و جهت انحلا‌ل‌پذیری به آن زمان داده شود. حلال‌های شیمیایی می‌توانند پلیمر را کاملاً در خود حل کنند یا تأثیر ناچیزی بر آن داشته باشند و یا اینکه بر ماده پلیمری کاملاً بی‌اثر باشند. تأثیر ناچیز حلال شیمیایی بر پلیمر اغلب تأثیر سطحی است که نشانه آن کدری و چسبندگی سطح محصول می‌باشد. عموماً این حلال‌ها بر روی ترموپلاستیک‌هایی مانند پلی‌اتیلن (PE)، پلی‌پروپیلن (PP)، پلی‌‌آمید (PA) و پلی‌کربنات  (PC)بی‌اثرند و یا اینکه تأثیر خیلی کمی دارند. حلالیت نه تنها به اجزای شبکه تشکیل‌دهنده یک ترموپلاستیک بلکه به درجه پلیمرشدن، میزان شاخه‌ای بودن، شبکه‌ای بودن و ایزومری، مظم فضایی و بلورینگی بستگی دارد. مهم‌ترین سؤالاتی که در این آزمون باید مد نظر قرار گیرند عبارتند از: آیا پلیمر در حلال حل می‌شود؟ متورم می‌شود؟ محلول ویسکوز می‌باشد؟ تغییر رنگی در محلول ایجاد می‌شود؟ برای آزمون حلالیت حلال‌های زیر را مورد بررسی قرار می‌گیرند: آب، اتانول، متانول، ایزوپروپانول، اسید سولفوریک غلیظ، اسید استیک گلاسیال، محلول سود ۱ مولار، تولوئن، کرزول، اتیل استات، سیکلوهگزان، ۲،۱ -دی کلرواتان، متیلن‌کلراید، کلروفرم، تتراکلریدکربن، دی‌متیل و استون.

1

 

تعیین چگالی (Density):

یکی از شاخص‌های مهم برای شناسایی نوع ترموپلاستیک، تعیین چگالی ترموپلاستیک می باشد. تعیین چگالی توسط سه روش اختلاف حجم، اختلاف وزن (جرم) و روش غوطه‌وری یا تعلیق انجام می‌گردد. معمول‌ترین روش جهت مشخص کردن چگالی یک پلیمر، روش غوطه‌وری است. در این روش نمونه پلیمری در مایعی با چگالی معین غوطه‌ور می‌گردد. رفتار نمونه بر اساس این که چگالیش کم‌تر از مایع، برابر با مایع و بیش‌تر از مایع باشد؛ به صورت قرار گرفتن روی سطح مایع، معلق در داخل مایع و نشستن در کف ظرف متفاوت خواهد بود.

تعیین نقطه ذوب (Melting Point):

با گرم کردن تدریجی ترموپلاستیک در یک لوله آزمایش می‌توان نقطه ذوب ترموپلاستیک مورد نظر را به دست آورد. لازم به ذکر است ترموپلاست هایی وجود دارند که تجزیه شدنشان سریع‌تر از مرحله ذوب شدنشان است مانند PVC و یا اینکه قبل از ذوب شدن تبخیر می‌گردند مانند PMMA.

تعیین pH:

توسط آزمایش مذکور در بخش نقطه ذوب می‌توان مقدار pH یک ترموپلاستیک را تعیین کرد. به این صورت که با قرار دادن کاغذ اندیکاتور (Indikator) بر بالای لوله آزمایش و تأثیر گاز متصاعد شده از لوله بر آن که منجر به تغییر رنگ اندیکاتور می‌گردد، می‌توان مقدار pH محصول را مشخص کرد.

آزمون تجزیه حرارتی (پیرولیز) (Pyrolysis):

مقداری از ترموپلاستیک (متناسب با چگالی پلیمر) را در لوله آزمایش قرار داده و سپس در آن را با پنبه بسته و لوله آزمایش را روی شعله ملایم گرفته اثر بخارات حاصل از سوختن بر روی کاغذ pH، اسیدیته نمونه را مشخص می‌کند.

EE

آزمون رنگ (Color):

آزمون رنگ، بر اساس واکنش ترموپلاستیک با معرف است که منجر به تشکیل رنگ ناشی از تولید فرآورده می‌شود. واکنش‌های تشکیل رنگ همچنان مفیدترین آزمون برای شناسایی مشخصات ساختاری و گروه‌های عاملی حتی در آزمایشگاه‌هایی که دارای تجهیزات پیشرفته هستند، می‌باشند. از مزایای آزمون رنگ می‌توان به حساسیت، مهارت، صرفه اقتصادی، زمان، مکان و حداقل تجهیزات با کاربری آسان اشاره نمود.

آزمون شعله (Flame Test):

آزمون شعله را می‌توان جهت شناسایی ترموپلاستیک‌ها به کار برد. چراکه شعله تولیدی حاصل از سوختن ترموپلاستیک‌ها، مشخصه‌های مختلفی را بسته به ساختار ماده نشان می‌دهد. به منظور بررسی رفتار یک ترموپلاستیک در برابر شعله‌ کافی است تا مقدار کمی از نمونه را به کمک اسپاتول بر روی شعله ملایم چراغ بونزن قرار دهید. سوالاتی را که باید حین انجام آزمون شعله به آن توجه داشت: آیا نمونه شعله‌ور می‌شود؟ یا به تدریج و به آرامی می‌سوزد؟ آیا پس از حذف شعله، خاموش می‌شود یا به سوختن ادامه می‌دهد؟ آیا در اثر سوختن گاز آزاد می‌کند؟ گاز آزاد شده روی کاغذ pH مرطوب چه اثری دارد؟ شعله آن چه رنگی است؟ آیا دوده تشکیل می‌شود؟ بوی حاصل از سوختن چیست؟ آیا در حین سوختن قطرات کوچک تولید می‌کند؟ پس از خاموش کردن شعله بو و خاکستر ماده باقی‌مانده بررسی می‌شوند. در نهایت مشاهدات با اسناد علمی تطابق داده می‌شوند. جدول زیر بیان‌کننده خصوصیات پلیمرها در تماس با شعله می‌باشد.

 

3 4

جهت شناسایی ترموپلاستیک‌ها و ترکیبات ‌آن‌ها روش مستقیم (تماس مستقیم با شعله) که بر اساس استاندارد UL-94 انجام می‌گیرد و روش غیر مستقیم (تماس با یک سیم با دمای مشخص) که بر اساس استاندارد (IEC Glow Wire Test: International Electrical Commission) انجام می‌گیرد، به کار می‌رود. علاقه‌مندان به این مبحث می‌توانند در مقالات بعدی همراه ما باشند.

همراهان عزیز می توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

 info@fara-ps.com 📧

شناسایی پلاستیک ها بر اساس روش های پایه و اولیه

برای تشخیص نوع پلاستیک‌ها روش‌های متعددی وجود دارد. از جمله روش‌های پایه و سریع می‌توان به بررسی شکل ظاهری، بررسی انحلال‌پذیری در حلال‌‌های شیمیایی، تعیین چگالی، تعیین نقطه ذوب، تعیین مقدار pH، آزمون پیرولیز، آزمون رنگ و آزمون شعله اشاره کرد. اما در این بین روش سوزاندن از جمله روشهای آسان و قابل دسترس برای تشخیص اولیه نوع پلیمر می باشد.

نمودار زیر دسته بندی دقیقی از شناسایی پلیمرها بر اساس روش سوزاندن فراهم کرده است.

 

 

✒️ دانلود فایل به صورت PDF از طریق لینک امکان پذیر است.

 

همراهان عزیز می توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

 info@fara-ps.com 📧

Capture

جدولی تناوبی ترموپلاستیک‌ها

ویژگی‌های متداول پلاستیک‌های دارای مصارف عمومی، مهندسی و فوق مهندسی و محدوده عمل‌کردی آن‌ها

ترموپلاستیک‌ها:

در مواد ترموپلاست زنجیره‌های پلیمر با نیروی ضعیف واندروالس کنار هم قرار گرفته‌اند. به این دلیل در اثر حرارت‌دهی این نیروها ضعیف شده و پلیمر به ماده‌ای نرم و انعطاف پذیر تبدیل می‌شود. در صورت افزایش بیش‌تر دما، ماده مذاب ویسکوز می‌شود. قطعات تولید شده از مواد ترموپلاستیک را می‌توان به دفعات خرد و دوباره مصرف نمود و شکل جدیدی به آن‌ها داد. البته این گونه مواد (ضایعات/آسیابی) هر بار که حرارت ببینند و مجدداً شکل بگیرند، مقداری از خواص مکانیکی آنها افت می‌کند. بهترین ویژگی ترموپلاستیک‌ها وابستگی آن‌ها به حرارت است که برای فرآیندپذیری آن‌ها بسیار اهمیت دارد. البته از طرفی نقطه ضعف هم محسوب می‌شود چرا که در محدوده دمایی خاصی کاربرد دارند. نمونه‌هایی از این مواد پلی‌اتیلن، پلی‌پروپیلن، پلی‌آمیدها، پلی‌کربنات و…

مواد ترموپلاستیک به دو دسته تقسیم می‌شوند:

آمورف: زنجیره‌های پلیمری این مواد به صورت غیر یکنواخت و نامنظم آرایش یافته‌اند و در محدوده وسیعی از دما متحرک هستند. مواد آمورف نقطه ذوب خاصی ندارند و با افزایش دما شروع به نرم شدن می‌کنند. لازم به ذکر است که فرضیه عدم وجود هیچ گونه نظم و بلورینگی در پلیمر آمورف صحیح نیست. پلیمر آمورف، پلیمری است که نظم بلورینگی از نوع long range order نداشته باشد. یعنی پلیمر آمورف می‌تواند نواحی پُر نظم داشته باشد ولی این نواحی باید به صورت short range order باشند.

کریستال: در برخی ترموپلاستیک ها به دلیل نظم ساختاری (کانفورماسیون و گانفیگوراسیون) زنجیرهای پلیمر می‌توانند کنار یک‌دیگر منظم شوند و ساختار نیمه بلوری را به وجود بیاورند. با رشد درصد بلورینگی تراکم ساختار زیاد شده و چگالی افزایش بالاتر خواهد بود.

چگالی بخش بلورین پلیمر از چگالی بخش آمورف آن‌ بیش‌تر می‌باشد. البته در این مورد استثناء نیز وجود دارد که می‌توان به (Poly(4-methyl-1-pentene و Syndiotactic Polystyrene اشاره کرد. دلیل این تعارض، فشردگی نامؤثر گروه‌های آویز حجیم در پلیمرهای مذکور است که سبب کاهش چگالی نواحی بلورین نسبت به نواحی آمورف می‌شود.

پلیمرهای آمورف شفاف اما پلیمرهای بلوری معمولاً مات و کدر هستند. هر چه اندازه بلورها بیش‌تر باشد تفرق نور بیش‌تر بوده و پلیمر کدرتر است. اگر اندازه بلورها ریز باشد می‌توان یک پلیمر بلورین شفاف داشت مانند پلی‌اتیلن.

پلیمرهای آمورف ترد و شکننده (Brittle) می‌باشند اما پلیمرهای نیمه بلوری ضربه‌پذیری خوبی دارند. یکی از راه‌های مقاوم‌سازی پلیمرها در برابر ضربه، چقرمه کردن (Toughening) آن‌هاست.

جهت دانلود فایل به صورت فایل PDF روی لینک زیر  کلیک کنید:

TI-Polymer-Periodic Table

(TI-Polymer-Periodic Table (Reduced