وضعیت ورود
درحال حاضر شما وارد سایت نشده اید.
آمار بازدیدکنندگان
  • کاربران حاضر: 0
  • بازدید امروز: 1,440
  • بازدید ماه: 89,332
  • بازدید سال: 902,743
  • کل بازدیدکنند‌گان: 234,384
قیمت روز

EVA

گرید جدید TPU جای‌گزینی برای EVA در کفش

Irogran TPU قابل بازیافت به راحتی به ورق‌های فومی برای کاربردهای کفی، میانی و جلویی کفش‌ توسعه داده می‌شود. کاربردهای دیگر، به ویژه در خودرو، در حال بررسی است.

طبق گزارش‌ها، پلی‌یورتان ترموپلاستیکی جدید (TPU) که ​​توسط Huntsman ساخته می‌شود، کاملاً قابل بازیافت، محافظت شده در برابر اشعه ماوراء بنفش است و می‌تواند به صورت یک فیلم اکسترود شود و سپس به راحتی در صفحات فوم گسترده شود. Irogran TPU توسط Huntsman در همکاری با Shincell New Material Co. Ltd تولید شد که از این ماده برای ایجاد صفحات فوم برای کاربردهای کفی، میانی و جلویی توسط برندهای جهانی کفش استفاده می‌کند.

به گفته Huntsman، در حالی که به عنوان جای‌گزینی برای EVA طراحی می‌شود، این ماده جدید دارای خواص بازگشت انرژی بالایی است و عمل‌کرد زیرسازی ماندگاری طولانی را ارائه می‌دهد. فیلم TPU می‌تواند به راحتی در یک مخزن فشار بالا با استفاده از فناوری به کمک گاز، بدون نیاز به مواد شیمیایی اضافی که معمولاً برای فوم کردن یا اتصال عرضی مورد نیاز است، منبسط شود. Huntsman در آگهی خود گفت که این نتیجه را می‌سازد که ورق فوم منبسط می‌شود، و هر گونه ضایعات پس از تولید و اجزای نهایی کفش، سبک وزن و به آسانی بازیافت شوند.

محبوبیت TPU توسعه یافته، جرقه همکاری Huntsman و Shincell  را می‌زند.

به گفته Huntsman، محبوبیت روزافزون صفحات TPU توسعه یافته در حوزه کفش که باعث بحث‌های عمیق اولیه با Shincell پیرامون چه قدر به بهترین شکل فرآیند تولید بهبود یابد، شد. در طی یک جلسه توجیهی فنی، Shincell هدف‌های متعددی را ذکر کرد:

  • افزایش بهره‌وری، ضایعات کم‌تر و کاهش مصرف انرژی کل.
  • ماده‌ای که عاری از مواد شیمیایی سمی یا فرار بود و می‌تواند بدون استفاده از بوتان، فلوراید یا عوامل فوم‌زای آزودی کربن‌امید منبسط شود.
  • یک سیستم TPU راحت، بادوام و ماندگار که برای استفاده در کفش‌های ورزشی با کارایی بالا مناسب است.
  • ماده‌ای که از نظر ویژگی‌های مجموعه زیرسازی عمل‌کرد بهتری نسبت به EVA دارد.
  • قابلیت بازیافت

به عنوان یک کسب و کار، ما بر ارائه مواد تمیز، سازگار با محیط زیست، با کارایی بالا و سبک وزن به مشتریان خود متمرکز شدیم. دکتر Xiulei Jiang، بنیان‌گذار Shincell، که قبل از تأسیس شرکت خود با Huntsman ارتباط داشت، گفت: وقتی تصمیم گرفتیم شریکی پیدا کنیم تا به ما کمک کند پایداری ورق های فوم خود را بهبود ببخشیم، می‌دانستم Huntsman شرکتی است که باید با او صحبت کنم. Huntsman همیشه سطح بالایی از پشتیبانی مستمر را برای من فراهم کرده است، و می‌دانستم که رابطه کار کردن قوی و ارزش‌های اصلی مشترک ما این پروژه را برای نتیجه سریع و کارآمد به ثمر می‌رساند. این تیم محصول بسیار ویژه‌ای را ارائه کرده است که تمام نیازهای ما را برآورده می‌کند. ما شاهد کاربردهای جدید بی‌شمار برای این ماده همه کاره، قابل بازیافت در داخل کفش و فراتر از آن هستیم.”

a

به گفته Huntsman ،Irogran TPU دارای ویژگی‌های بازده انرژی بالایی است و عمل‌کرد زیرسازی طولانی مدت را ارائه می‌دهد.
قابلیت بازیافت، توسعه بدون مواد شیمیایی، مواد را به یک بازی گر تبدیل می‌کند.
Shincell ورق های فوم منبسط شده را تولید می‌کند که مشتریانش در حوزه کفش به شکل‌ها و اندازه‌های مورد نیاز برش می‌دهند. از آنجایی که این گرید خاص از Irogran TPU قابل بازیافت است، Shincell می‌تواند هر گونه مواد اضافی یا ضایعاتی را برای استفاده مجدد از مشتریان خود جمع‌آوری کند. پس از جمع‌آوری، ضایعات آسیاب شده و دوباره فرموله می شوند. آنها همچنین می توانند به مشتریان دیگر فروخته شوند.
Yi Li، مدیر توسعه کسب‌ و کار در Huntsman، گفت: « Shincell با چشم‌اندازی کاملاً روشن و مجموعه‌ای از الزامات فنی به سراغ ما آمد. کار با هم روی این پروژه و ایجاد چنین مواد بدیع بسیار عالی بود. این واقعیت که آن می‌تواند بدون استفاده از مواد شیمیایی توسعه داده و به راحتی بازیافت شود، یک بازی‌گر است. ما مطمئن هستیم که اخبار توسعه آن علاقه زیادی را از سوی کارشناسان مواد در بخش‌های مختلف حوزه کفش ایجاد خواهد کرد.»
Shincell در حال حاضر در حال آزمایش گرید جدید Irogran TPU برای سایر کاربردهای مصرف‌کننده است و در حال بررسی استفاده بالقوه آن در صنعت خودروسازی است. سایر گریدهای نرم‌تر از مواد نیز در خط لوله توسعه هستند.

لینک خبر:
https://www.plasticstoday.com/materials/new-tpu-grade-alternative-eva-footwear

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

 

پلاستیک‌ها در بسته‌بندی-قسمت دوم

بسته‌بندی‌های پلاستیکی را به دو دسته صلب (سخت) و انعطاف‌پذیر تقسیم می‌کنند. پلی‌اتیلن سبک، پلی‌پروپیلن و پلی‌وینیل‌الکل جزء پلاستیک‌های انعطاف‌پذیر هستند. پلی‌اتیلن سنگین، پلی‌اتیلن‌ترفتالات و پلی‌استایرن از پلاستیک‌های سخت هستند. طی چند دهه گذشته، پیش‌رفت و تکامل بسته‌بندی با پلاستیک‌های گرمانرم برای غذاهای آماده و منجمد، لبنیات، نوشابه‌ها، نان و شکلات اهمیت و ضرورت پیش‌تری پیدا کرده است.

انواع فیلم‌های پلاستیکی

فیلم‌های پلاستیکی گرمانرم ساده‌ای که در بسته‌بندی استفاده می‌شوند، عبارتند از:

سلوفان: (فیلم سلولزی) اولین فیلم شفاف به کار رفته برای بسته‌بندی بود. فیلم سلوفان دارای خصوصیات ویژه‌ای است که در ادامه کاربرد آن را تضمین می‌کند. مهم ترین خاصیت فیلم سلوفان عبور سریع رطوبت از آن است که آن را برای بسته‌بندی مواد غذایی مانند پیراشکی و نان مناسب می‌سازد. زیرا برای جلوگیری از کپک‌زدگی رطوبت داخل بسته باید کاهش پیدا کند. فیلم‌های سلولزی در مقایسه با سایر فیلم‌های پلاستیکی جدید هزینه تولید بیش‌تر و کارایی کم‌تری دارند.

پلی‌الفین‌ها: در کاربردهای بسته‌بندی ضروری هستند. اولین فیلم پلاستیکی تولید شده، پلی‌اتیلن سبک (LDPE) بود که هنوز هم در حجم وسیعی در بسته‌بندی استفاده می‌شود. سایر پلی‌الفین‌های مهم عبارتند از پلی‌اتیلن سبک خطی (LLDPE)، پلی‌اتیلن‌سنگین (HDPE)، پلی‌پروپیلن (PP)، پلی‌پروپیلن آرایش‌یافته در یک جهت (OPP) و در دو جهت (BOPP) و کوپلیمر اتیلن‌وینیل‌استات (EVA).

فیلم‌های پلی‌الفین در برابر نفوذ گازها و مواد معطر مقاومت کمی دارند ولی از نظر مقاومت در برابر نفوذ رطوبت خیلی خوب هستند و این ویژگی باعث کاربرد گسترده آن‌ها در بسته‌بندی مواد غذایی حساس به رطوبت می‌شود.

پلی‌اتیلن‌ سبک خطی(LDPE): ماده‌ای سفت و نیمه‌شفاف با ضربه پذیری زیاد است که مقاومت شیمیایی خوبی در برابر اسیدها، بازها و محلول‌های آبی املاح معدنی دارد. همچنین این ماده مقاومت خوبی در برابر بخار آب و مفوذپذیری زیادی نسبت به گازها دارد. LDPE در برابر هیدروکربن‌های هالوژن‌دار و روغن‌ها حساس است و در اثر آن‌ها متورم می‌شود. این پلیمر در ساخت فیلم، کیسه و نیز به شکل لایه پوشش در فویل‌ها و روی مقوا و کاغذ است.

پلی‌اتیلن سبک خطی (LLDPE): دارای همان خواص است ولی از آن قوی‌تر و سخت‌تر است. کاربرد پلی‌اتیلن سبک معمولاً به شکل فیلم‌های نازک انعطاف‌پذیر است. دو ویژگی مهم که کاربرد گسترده‌تر آن را در صنعت بسته‌بندی محصول غذایی موجب می‌شود عبارتند از:

  • خنثی بودن آن یعنی عدم واکنش با محصول
  • دوخت‌پذیری گرمایی آن

به همین دلیل لازم است بسته‌بندی‌های چند لایه به عنوان لایه درونی و در تماس مستقیم با محصول از فیلم نازک پلی‌اتیلن سبک استفاده ‌شود. این فیلم شفاف و در برابر نور نفوذپذیر است. بنابراین در موارد نیاز به همراه فویل آلومینیوم به کار می‌رود. کاربرد مشخص پلی‌اتیلن سبک در بسته‌بندی‌های چهار لایه (Tetrapack) برای شیر استریل و آب میوه، بسته‌بندی پاک (Purepack) برای بسته‌بندی شیر پاستوریزه و ماست، سه لایه (Tripack) برای بسته‌بندی‌های کیسه‌ای، سه لایه برای شیر پاستوریزه و پنج لایه برای شیر استریل است.

پلی‌اتیلن سنگین (HDPE): پلیمری سخت و محکم با شفافیت کم است که در برابر ضربه مقاومت ضعیفی دارد. این ماده در مقایسه با پلی‌اتیلن سبک مقاومت بهتری به بخار آب و نفوذ گازها دارد. از HDPE در ساخت فیلم، بطری و سبد پلاستیکی استفاده می‌شود.

پلی‌پروپیلن (PP): پلاستیکی سخت با دمای ذوب ۱۶۰-۱۷۰ درجه سانتی‌گراد است. استحکام خوبی دارد ولی در دمای زیر صفر استحکام آن کم می‌شود. پلی‌پروپیلن آرایش‌یافته فیلمی درخشنده و شفاف است که دارای خواص مکانیکی خوب و نفوذپذیری متوسط در برابر گاز و بخار است.

انواع پلی‌پروپیلن موجود در بازار عبارتند از:

الف) پلی‌پروپیلن ساده: برای تولید انواع درب پلاستیکی بطری‌ها از آن استفاده می‌شود. برای تولید بطری‌ها نیز در بعضی موارد از این پلیمر استفاده می‌شود.

ب) پلی‌پروپیلن آرایش یافته خطی: این ماده در حین فرآیند تولید تحت نیروی کششی در دو جهت عمود بر هم قرار داده می‌شود. در نتیجه فیلم نازک شفاف حاصل دارای خواص مکانیکی خوب با ویژگی ممانعت‌کنندگی مناسب‌تر نسبت به گاز و بخار متوسط است. این فیلم برای بسته‌بندی و لفاف‌های مواد غذایی مانند انواع چیپس، پفک، ماکارونی، بادام زمینی و غذاهای آماده مناسب است.

ج) پلی‌پروپیلن آرایش‌یافته قطبیده: این ماده به شکل فیلم نازک انعطاف‌پذیر به رنگ سفید صدفی تولید می‌شود و جای‌گزین مناسبی برای کاغذ در بسته‌بندی ویفر، شکلات و پودر سوپ است. این نوع پلی‌پروپیلن تا حدودی پوشاننده لکه چربی است و از این نقطه‌نظر کاربرد بیش‌تری در چنین محصولات غذایی دارد.

پلی‌وینیل‌استات (PVA) و کوپلیمر اتیلن‌وینیل‌استات (EVA): این ماده و کوپلیمرهای آن مهم‌ترین رزین‌های مصرفی برای تولید چسب‌های امولسیونی به شمار می‌روند. فیلم‌های پلی‌وینیل‌استات شفاف دارای خاصیت انعطاف‌پذیری زیاد است که مقاومت زیادی در برابر ضربه و نفوذپذیری زیادی در برابر گازها و بخار آب دارند. به همین دلیل در بسته‌بندی‌هایی که نیازمند خواص خم‌شوندگی و کشسانی هستند، مانند بسته‌بندی گوشت‌های منجمد استفاده می‌شوند.

پلی‌وینیل‌الکل (PVOH) و اتیلن‌وینیل‌الکل (EVOH): این فیلم‌ها در مقایسه با سایر فیلم‌های پلاستیکی گرمانرم که برای بسته‌بندی به کار می‌روند، مقاومت خیلی خوبی در برابر نفوذ اکسیژن دارند، به شرط این که رطوبت آن‌ها زیاد نباشد. به سبب انحلال‌پذیری این فیلم‌ها در آب از آن‌ها در کاربردهای بسته‌بندی‌های چندلایه به عنوان لایه درونی یا چسب استفاده می‌شود.

پلی‌وینیل‌کلراید (PVC): معمولاً PVC به دو شکل سخت و نرم شده در صنایع گوناگون مصرف می‌شود. فیلم‌های آن سخت و شفاف هستند اما اگر مواد نرم‌کننده داشته باشند، نرم و انعطاف‌پذیر می‌شوند. این فیلم‌ها دارای مواد نرم‌کننده، نفوذپذیری زیاد در برابر رطوبت بوده و برای پوشش سبزی‌جات تازه، ماهی، گوشت و پنیر برای زمان نگه‌داری کوتاه استفاده می‌شود.

پلی‌وینیلیدن کلراید (PVDC): تولید این گونه فیلم‌ها مشکل و گران است. این فیلم‌ها در طبیعت تجزیه نمی‌شوند. پلیمر مزبور جزء پلاستیک‌های دارای مقاومت خوب در برابر گازهاست و نسبت به بخار آب نفوذناپذیر است. از این پلیمر در مقیاس وسیعی به عنوان پوشش محافظ و مقاوم برای جلوگیری از نفوذ رطوبت و اکسیژن به مواد مختلف و در فیلم های چندلایه استفاده می‌شود. از فیلم‌های تک‌لایه PVDC برای بسته‌بندی گوشت، ماهی، پنیر، محصولات تازه و کیک استفاده می‌شود. در بسته‌بندی‌های تحت خلأ، نوعی از این ماده پلیمری استفاده می‌شود که کاملاً به سطح محصول می‌چسبد.

نایلون یا پلی‌آمید (PA): مهم‌ترین نایلون های مصرفی در بسته‌بندی، نایلون ۶ و نایلون ۶و۶ هستند. فیلم‌های نایلون دارای مقاومت بسیار خوبی در برابر نفوذ گازها هستند، مگر این که درصد رطوبت زیادی داشته باشند. فیلم‌های نایلون استحکام و انعطاف پذیری بیش‌تری نسبت به فیلم‌های PET دارند و برای شکل‌دهی گرمایی مناسب‌اند. نایلون تحمل دمای سترون کردن مواد غذایی را دارد. به علت نفوذپذیری کم نسبت به گازها از آن در ساخت کیسه‌های مخصوص بسته‌بندی تحت خلأ از جمله پنیر، گوشت، سوسیس و کالباس استفاده می‌شود.

پلی‌اتیلن ترفتالات (PET): فیلم‌های آرایش‌یافته آن، شفافیت، استحکام و مقاومت بسیار خوبی در برابر سوراخ شدن و نفوذپذیری کمی در برابر گازها دارند. بدین سبب از بطری‌های آن برای نوشابه‌های گازدار و روغن مایع استفاده می‌شود. شیوه خاص شکل‌دهی این نوع بطری‌ها باعث می‌شود تا اولاً شفافیت بطری، ثانیاً ویژگی ممانعت‌کنندگی برتر آن به ویژه در برابر نفوذ گازها و ثالثاً سبک بودن بطری و مقاومت مکانیکی زیاد آن تأمین شود. فیلم پلی‌اتیلن‌ترفتالات، استحکام لازم برای بسته‌بندی را تأمین می‌کند. نمونه آن در بسته‌بندی آب میوه مانند محصولات ساندیس است در این مورد ترتیب استقرار لایه‌های ماده بسته‌بندی بدین شکل است: PET/Al.foil/PET

پلی‌استایرن (PS): این پلیمر در برابر اسیدها و بازها مقاوم است و در الکل‌های سبک و هیدروکربن‌های آلیفاتیک نامحلول است ولی در هیدروکربن‌های آروماتیک و الکل‌های سنگین محلول است. مقاومت آن در برابر نفوذ گازها و بخار آب متوسط است. پلی‌استایرن از معمول‌ترین پلاستیک‌ها برای فرآیند قالب‌گیری تزریقی است. در سیستم‌های تحت خلأ در ساخت انواع ظروف یک‌بار مصرف یا سینی‌های نگه‌داری غذا، انواع میوه و سبزی تازه استفاده می‌شود. به طور کلی دو نوع پلی‌استایرن تولید می‌شود:

الف) پلی‌استایرن مقاوم به ضربه (HIPS): که برای تولید ظرف ماست و مرباهای تک نفره استفاده می‌شود.

ب) پلی‌استایرن منبسط شده (EPS):  در فرآیند تولید این پلیمر از گازهای فراری استفاده می‌شود که موجب انبساط بافت پلیمری و ایجاد سلول‌های بسته توخالی در بافت ماده محصولات شکننده مناسب است. مثل ظروف غذای یک‌بار مصرف و شانه تخم مرغ، ثانیاً عایق گرمابی خوبی است و برای عرضه محصولات گرم آماده مناسب است. ثالثاً سبک بودن آن، حمل و نقل را آسان‌تر می‌کند.

کوپلیمر استایرن‌آکریلونیتریل (SAN): این پلیمر دارای سختی و مقاومت زیادی در برابر مواد شیمیایی، رطوبت و گازها در مقایسه با پلی‌استایرن است ولی در برابر نور خورشید تغییر رنگ می‌دهد.

آکریلونتیریل‌بوتادی‌ان‌استایرن (ABS): این پلیمر سخت، محکم و در برابر مواد شیمیایی مقاوم است. در صنعت بسته‌بندی مواد غذایی در تولید سینی‌های مخصوص حمل نان، کیک، ظروف بسته‌بندی مارگارین و بطری‌های آب استفاده می‌شود.

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

اتیلن وینیل استات (EVA) Ethylene Vinyl Acetate Copolymers

ساختار شیمیایی پلیمر EVA در زیر آمده است

Untitled

 

این کوپلیمرها موادی بسیار انعطاف‌پذیر و چقرمه با خواص چسبندگی می‌باشند. مقدار وینیل‌استات از ۱% تا ۵۰% در حال تغییر می‌باشند. و انواع تجاری با مقادیر بیش از ۲۰% از وینیل‌استات، EVAهای با درصد بالای وینیل‌استات نامیده می‌شوند. از همه فرآیندهای ساخت ویژه بسپارهای گرمانرم برای تولید محصول در شکا نهایی خود می‌توان برای تولید محصولات EVA نیز استفاده کرد. همچنین از این رزین‌ها می‌توان برای ساخت چسب‌های گرماذوب استفاده کرد و آن‌ها را می‌توان با سایر پلیمرها آمیزه‌سازی کرد.

خواص مکانیکی

خواص EVA در نرمی و انعطاف‌پذیر نزدیک به مواد الاستومری است. بنابراین با محصولات لاستیکی و وینیل برای مثال در کاربردهای الکتریکی قابل رقابت است. قابل ذکر است که کوپلیمر می‌تواند مانند سایر ترموپلاستیک‌ها فرآورش شود. این ماده چقرمگی خوب در دمای پایین و مقاومت در برابر تنش-ترک‌خوردگی را نشان می‌دهد. EVA  مقاومت خوبی در برابر اشعه ماورا بنفش نشان می‌دهد. علاوه بر این، از وضوح خوبی برخوردار است.

Untitled

کاربردها

فوم EVA برای کاربردهای ورزشی مانند چکمه‌های اسکی، چکمه‌های واتراسکی و هنرهای رزمی ترکیبی

EVA همچنین در کاربردهای پزشکی برای مثال تجهیزات دارورسانی استفاده می‌شود.

آمیزه‌ها

برخی از کوپلی‌استرهای آلیفاتیک-آروماتیک که شناخته شده هستند زیست تخریب‌پذیر بودند. برای مثال آن‌ها می‌توانند تکه تکه شدن و تجزیه میکروبی در محیط کامپوست را متحمل شوند. با این حال، کوپلی‌استرها از مقاومت ذوب ضعیفی در مقایسه با سایر رزین‌ها رنج می‌برند. به طور خاص، یک استحکام ذوب پایین اغلب منجر به شکست‌های خطوط بیش‌تر، بی‌ثباتی و سرعت تولید کم‌تر در تجهیزات فرآورش می‌شود که هزینه کالای پلیمری نهایی را افزایش می‌دهند. این عدم فرآیندپذیری دامنه کاربردهای چنین کوپلی‌استرها را محدود کرده است. مخلوط‌های کوپلی‌استرهای آروماتیک-آلیفاتیک با پلیمرهای EVA یک استحکام مذاب بالاتر از کوپلیمرهای آلیفاتیک به تنهایی دارند و استحکام مذاب افزایش‌یافته و فرآیندپذیری بهتر را نشان می‌دهند.

به علاوه آمیزه‌ها تجزیه زیستی و زیست‌تخریب‌پذیری در محیط کامپوست را نشان می‌دهند. افزودنی‌های زیست‌تخریب‌پذیر شامل

  • نشاسته ترموپلاستیک
  • سلولز میکروبلورین
  • پلی‌لاکتیک‌اسید
  • پلی‌(۳-هیدروکسی‌بوتیرات)
  • پلی‌وینیل‌الکل

تسریع‌کننده‌های تجزیه زیستی سرعت زیست‌تخریب‌پذیری در محیط را افزایش یا شتاب می‌دهند. برای مثال کربنات کلسیم، هیدروکسید کلسیم، اکسید کلسیم، اکسید باریم، هیدروکسید باریم، سیلیکات سدیم، فسفات کلسیم، اکسید منگنز، می‌توانند فرآیند زیست‌تخریب‌پذیری را شتاب دهند. همچنین این ترکیبات می‌توانند به عنوان کمک فرآیند عمل کنند. یک ترکیب معمول استفاده شده کربنات کلسیم است.

کاربردهای درزگیر گرما

مشخص شده است که در توسعه پلیمرهای EVA برای کاربردهای درزگیر گرما توسط پلیمریزاسیون امولسیونی که غلظت وینیل استات و اتیلن در پلیمر به تنهایی مسئول استفاده از آن به عنوان چسب درزگیر گرما نیست. در عوض، توزیع وینیل استات و اتیلن در کوپلیمر یک عامل اصلی است. ایجاد چسبندگی به یک بستر، سطح کافی از سگمنت پلیمری اتیلن وینیل استات آمورف مورد نیاز است. علاوه بر این، سطح کافی از سگمنت‌های پلیمری اتیلن بلوری برای ایجاد تعادل مناسب از ویژگی‌های درزگیر گرما و عدم انسداد مورد نیاز است.

سگمنت‌های اتیلن مجاور منجر به تبلور اتیلن در پلیمر می‌شود.

مقدار نامناسب می‌تواند منجر به پلیمرهای EVA شود که چسبندگی از لحاظ استحکام چسب گرم hot green strength و استحکام چسبندگی دمای اتاق کمی دارند اما از آزمون غیر مسدود کننده عبور می کنند یا ممکن است چسبندگی مطلوبی داشته باشند اما در دما و فشار مورد نظر تست عدم انسداد را برآورده نمی‌کنند.

در پلیمرهای EVA با تنظیم محتوای اتیلن می توان دمای انتقال شیشه پلیمر را کنترل کرد. از آنجا که اتیلن بیش‌تری در پلیمر وجود دارد، دمای انتقال شیشه نیز کم‌‌تر است. با این حال، تحت شرایط خاصی از پلیمریزاسیون، تشکیل حوزه‌های پلی‌اتیلن ​​بلوری مورد علاقه است.

بنابراین، دمای انتقال شیشه دیگر به طور سیستماتیک متناسب با غلظت اتیلن کاهش نمی یابد. اگر بخش اتیلن کوتاه باشد حوزه‌های آمورف مورد پسند قرار می‌گیرند. در این وضعیت، دمای انتقال شیشه حتی با شدت بیش‌تری کاهش می‌یابد.

درزگیری

محصولات بنّایی به طور گسترده در صنعت ساخت و ساز مورد استفاده قرار گرفته است و شامل مصالح ساختمانی نظیر مواد سیمانی، بتن، آجر، کاشی، سنگ، دوغاب و مانند آن است. مسیرهای رانندگی، کف‌پوش گاراژ‌، بلوک بتنی، نماهای آجری، شومینه، دیوار و سطح آشپزخانه نمونه کاربردهای آن هستند. سطوح بنایی متخلخل می‌باشد و در صورت عدم محافظت می‌تواند در اثر قرار گرفتن در معرض آب معیوب شوند و تغییر رنگ دهند. به عنوان مثال نفوذ آب می‌تواند سبب پوسته شدن یا تغییر رنگ از طریق رشد میکروبی شود. کاشی و دوغاب استفاده شده در خانه‌ها با مواد غذایی و مایعات مختلف نظیر آب میوه، قهوه، روغن، سس گوجه فرنگی و… در تماس است که می‌تواند سبب ایجاد تغییر رنگ شود. روغن موتور، روغن ترمز و سایر مایعات می‌تواند باعث تغییر رنگ کف گاراژ شود. بنابراین این یک عمل معمول برای پوشاندن سطوح سنگ بوده تا در برابر آب، روغن و سایر آلاینده‌ها مقاومت کند. به طور کلی پوشش برای محصولات بنایی دونوع بوده است: یک نوع پوشش ضد آب (waterproof coating) و نوعی دیگر پوشش دافع آب (repellant coating). نوع پوشش ضد آب کاملاً در برابر آب، بخار آب و سایر مواد غیر قابل نفوذ است. از طرف دیگر پوشش دافع آب سطحی نفوذ ناپذیر در برابر آب در فاز مایع بوده اما در فاز گاز قابل نفوذ به آب است. نمونه مواد برای سطوح بنایی ضد آب غشاهای ضد آب مانند PVC، PE، لاستیک بیوتیل و درزگیر نظیر قیر، آسفالت، رنگ، پلی یورتان، اپوکسی و نوعی بتونه است. در حالی که این عوامل ضد آب می‌توانند در برابر نفوذ آب و سایر آلاینده‌ها مقاومت مطلوب ایجاد کنند می‌توانند ظاهر سطح را نیز تغییر دهند. به عنوان مثال ممکن است رنگ سطح همراه با درخشش آن تغییر کند. اصلاح کننده‌های ضد آب همچنین می‌تواند رطوبت را در سطح بنا به دام بیندازد و ورقه شدن را ترویج دهد. نمونه اصلاح‌های دافع آب برای سطوح بنایی شامل استئارات‌های فلزی، روغن‌ها، واکس‌ها، آکریلات‌ها (پلیمر و مونومر)، سیلیکون‌ها (پایه حلال و امولسیون)، سیلیکونات‌ها، سیلان‌ها و مواد شمیایی فلوئوردار هستند. در مقابل پوشش‌های ضد آب، پوشش‌های دافع آب در برابر بخار آب نفوذ پذیر هستند، رطوبت را به دام نمی‌اندازند، بنابراین می‌توانند پوسته شدن را کاهش دهند. علاوه بر این، اکثر پوشش‌های دافع آب باعث تغییر ظاهر سطوح بنایی متخلخل نمی‌شوند. فرآیند بهبودیافته برای ایجاد دفع آب و مقاومت در برابر لکه سطح بنایی از یک پوشش پلیمری پایه آب و دافع آب متشکل از امولسیون آبی EVA استفاده می‌کند. این پلیمر توسط پلیمریزاسیون امولسیونی تشکیل می‌شود. بخشی از اتیلن به فرم بلورین وجود دارد. اتیلن نیمه بلورین بخشی از پلیمر که آب‌گریزی، انرژی سطح کم که در برابر نفوذ و لک شدن توسط آب، گریس، روغن و سایر آلاینده‌های احتمالی مقاومت می‌کند را ارائه می‌دهد. چندین مزیت می‌تواند به دست آید، از جمله قابلیت:

  • مقاومت در برابر لکه‌ها و قابلیت دفع آب را به سطح بنایی منتقل می‌کند.
  • تحمل دمای بالای محیطی بدون تخریب
  • استفاده از ترکیبات سازگار با محیط زیست به عنوان چاره‌ای قابل توجه برای فیلم‌های دافع آب غیر قابل تغییر رنگ در سطوح بنایی.

واکس‌ها

واکس‌های کوپلیمر EVA در انواع مختلف کاربردهای تجاری و برنامه‌های خاص در ساخت پوشش‌ها یا فیلم‌هایی که می‌توانند به لایه‌های مختلف بچسبند مورد استفاده قرار می‌گیرند. واژه‌ واکس به ترکیبات الیگومری دارای خصوصیات زیر اشاره دارد:

  • جامد در دمای اتاق
  • نقطه ذوب پایین
  • نامحلول در آب

به طور ویژه واکس‌های EVA به پلیمر الیگومری اشاره می‌کند. آن‌ها توسط کوپلیمریزاسیون مونومرهای اتیلن و وینیل استات به روش یکسان در جرم مولکولی بالا تهیه می‌شوند. از آنجا که واکس‌های EVA ویژگی‌های چسب نسبتاً قوی را از خود نشان می‌دهد، این واکس‌ها به ترکیبات پلاستیک اضافه می‌شوند. نقش آن‌ها تشکیل غلاف‌های سیم است که با مقاومت نسبتاً بالا به هسته‌ی سیم‌های هادی عایق شده می‌چسبند. علاوه بر چسبندگی قوی به لایه‌های زیرین، اغلب در بسیاری از کاربردها برای تشکیل پوشش‌ها با قابلیت جدا شدن با حداقل نیرو، مفید و سومند هستند. در صنعت پوشش، اغلب وجود غلاف‌هایی که به راحتی برداشته می‌شوند یا ازبین می‌روند مطلوب است و دسترسی آسان به هسته رسانا برای برقراری تماس الکتریکی سیم‌ها را فراهم می‌سازد. به طور خاص واکس‌های کوپلیمر EVA حاوی ۱۰% وینیل استات است. پراکندگی وزن مولکولی در حدود ۶ و میانگین وزن مولکولی حدود K Dalton  ۱۵-۴۰ است.

چسب گرماذوب

یک ترکیب چسب گرماذوب شرح داده شده است که حاوی دو نوع EVA می‌شود، به علاوه یک رزین هیدروکربنی نفتی هیدروژنه شده. ترکیبات چسب‌های گرماذوب در میان دیگران برای اتصال لبه‌ها استفاده می‌شوند. در حین اتصال‌دهندگی، چسب گرما ذوب در حالت ذوب شده در ظرف چسب دستگاه اتصال‌دهنده برای مدت زمان طولانی نگه داشته می‌شود. پرکننده‌ها به منظور کاهش هزینه‌های ترکیب چسب و بهبود عمل‌کرد شکست، به ترکیبات چسب گرما ذوب اضافه می شوند. به گونه‌ای که در طی مراحل استفاده، شکاف واضح از روی غلتک ایجاد کند.

بهبوددهنده‌های جریان سرد

با توجه به کاهش ذخایر نفت خام و بحث در مورد عواقب مخرب محیط زیست در استفاده از سوخت‌های فسیلی و معدنی علاقه بیش‌تری به جای‌گزینی منابع انرژی تجدید پذیر شامل روغن‌ها و چربی‌های خاص طبیعی از منشأ گیاهی و حیوانی وجود دارد. این روغن‌ها به طور کلی تری‌گلیسیریدهای اسید چرب با ۲۴-۱۰ اتم کربن هستند. اتم‌های کربن ممکن است اشباع شده یا اشباع نشده باشند. علاوه بر این ممکن است حاوی فسفوگلیسیرید باشند. ارزش گرمایی آن‌ها قابل مقایسه با سوخت‌های رایج است. با این حال آن‌ها برای محیط زیست آسیب کم‌تری دارند. سوخت‌های زیستی از منابع تجدید پذیر به دست می‌آیند و در صورتی که سوزانده شوند فقط به اندازه‌ CO2 خارج شده توسط فتوسنتز کربن دی اکسید تولید می‌کنند. در مسیر احتراق دی اکسید کربن کم‌تری نسبت به مقدار معادل نفت خام تقطیر شده به دست می‌آید، مثل سوخت دیزل. علاوه بر این دی‌اکسید‌گوگرد بسیار کمی تشکیل می‌شود. البته سوخت‌های زیستی قابل تجزیه هستند. به دلیل داشتن خواص فیزیکی نامطلوب تری‌گلیسیریدها، روغن‌ها به استرهای اسید چرب (الکل‌های کم) مانند متانول و اتانول تبدیل می‌شوند. عیب استفاده از تری‌گلیسیریدها و همچنین استرهای اسید چرب الکل‌های منوهیدریک به عنوان جای‌گزینی برای سوخت دیزل ثابت شده است که به تنهایی یا در مخلوط با سوخت دیزل رفتار جریان در دمای پایین است. دلیل آن یکنواختی زیاد این روغن‌ها در مقایسه با روغن معدنی نیمه تقطیری است. به عنوان مثال متیل استر روغن کلزا داری نقطه اتصال فیلتر سرد (CFPP) 14- درجه سانتی گراد است. نقطه اتصال فیلتر سرد یک روش استاندارد آزمایش است.

برای مدت طولانی فراهم کردن نقطه اتصال فیلتر سرد ۲۰- درجه سانتی گراد غیر ممکن است؛ زیرا برای سوخت دیزل در زمستان اروپای مرکزی مورد نیاز است. به هنگام استفاده از روغن سویا و آفتاب‌گردان این مشکل بیش‌تر هم می‌شود. مشکل اضافی دیگر این است که کمبود دمای پایین می‌تواند ثبات روغن فرموله شده را تغییر دهد. به عنوان مثال نقطه اتصال فیلتر سرد روغن‌های به دست آمده با ذخیره روغن به تدریج افزایش می‌یابد.

با این حال، روشی برای بهبود خصوصیات جریان چنین روغن‌های سوختی با منشأ حیوانی و گیاهی توسعه یافته است. این شامل افزودن کوپلیمر EVA یا پلیمر شانه‌ای بر پایه متیل آکریلات یا آلفا اولفین است. علاوه بر این ترپلیمرهای‌اتیلن، وینیل‌استات و ایزوبوتیلن به عنوان بهبوددهنده جریان سرد یافت شده‌اند. نقاط اتصال فیلتر سرد با مواد افزودنی خاصی وجود دارند. در جدول زیر نشان داده شده است. انحراف بین مقادیر متوسط CFPP پس از ذخیره‌سازی، قبل از ذخیره‌سازی و همچنین بین فازهای  منفرد کم‌تر از ۳k است ثبات تغییر دمایی خوبی را نشان می‌دهد.

Untitled

 

دارورسانی

کوپلیمر EVA در سیستم‌های انتقال دارو استفاده می‌شود. سیستم‌های دارورسانی بر اساس ماتریس EVA را می‌توان با فناوری اکستروژن تولید کرد. بر اساس این فناوری، سیستم‌های مورد استفاده تجاری توسعه یافته‌اند.

مفهوم این سیستم‌ها شامل یک الیاف کواکسیال است. در این لیف، یک دارو در یک پلیمر هسته پراکنده یا حل می شود. رهایش دارو از این الیاف کواکسیال متناسب با تغییر غلظت لیف است. اگر دارو در غلظت بیش از حلالیت در غشاء وجود داشته باشد، در سطح مجاور غلظت اشباع ایجاد می‌شود. این غلظت ثابت مسئول تغییر است. مشخص شده است که حلالیت دارو در پلیمر تحت تأثیر درجه حرارت فرآیند اکستروژن است. دماهای اکستروژن پلیمر بسیار پایین از نقطه ذوب دارو. با خنک شدن الیاف اکسترود شده، داروهای محلول ممکن است مجدداً متبلور شوند یا در محلول باقی بمانند، که منجر به حالت فوق اشباع می شود. مقدار داروی محلول را می توان با خواص رهایش ارتباط داد. حالتی که داروها پس از اکستروژن در آن باقی مانده است، خصوصیات نفوذ آن‌ها را تعیین می‌کند.

تأمین‌کنندگان و گریدهای تجاری

Untitled

Untitled

 

🔺شرکت فراپلیمرشریف تأمین‌کننده برخی از انواع پلاستیک‌های از جمله اتیلن وینیل استات (EVA)

#فراپلیمرشریف پیشرو در امر صادرات و واردات محصولات پلیمری و مشتقات نفتی

 

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

ترموپلاستیک های چقرمه شده

با گسترش روزافزون تقاضا برای استفاده از پلیمرها در صنایع مختلف، جواب‌گو نبودن خواص پلیمرهای شناخته‌‌شده برای کاربردهای خاص، عمل‌کرد بهتر با خطرات کم‌تر برای محیط زیست و فرآیندپذیری آسان­ تر و… دانشمندان علم پلیمر را به توسعه سامانه­ های ماکرومولکولی جدید، واداشت. از این رو روش آمیزه‌کاری (Compounding) به عنوان یک راه‌کار برای پاسخ­گویی به نیازهای صنعت و زندگی روزمره، پیشنهادشده و تحقیقات متعددی در این زمینه انجام گرفته است. این روش برای بهبود عمل‌کرد پلیمرها در اغلب کاربردهای صنعتی، علمی و همچنین تولید مواد با خواص بالاتر از خواص اجزای خالص سامانه می­ باشد.

امروزه مخلوط‌های پلیمری (Polymer Blends) بخش عمده‌ای از محصولات صنعتی را تشکیل می‌دهند. کم‌تر از  %۱۰ از مخلوط‌های پلیمری، امتزاج‌پذیر (Miscible) و طیف وسیعی از آنها امتزاج‌ناپذیر (immiscible) می‌باشند. به مخلوط‌های پلیمری امتزاج‌ناپذیر، آلیاژهای پلیمری (Polymer Alloy) گفته می‌شود. آلیاژهای پلیمری نیز خود به دو دسته سازگار (Compatible) و ناسازگار (incompatible) تقسیم می‌شوند که ناسازگار بودن اجزای آلیاژ خود منجر به بروز خواص ضعیف در آلیاژ پلیمری می‌گردد. در این حالت، جز اصلی تشکیل‌دهنده آلیاژ پلیمریست با ماهیت ترموپلاستیک. جزء الاستومری در آلیاژ برای ایجاد چقرمگی و مقاومت در برابر ضربه مورد استفاده قرار می‌گیرد.

بهبوددهنده‌های ضربه‌پذیری موادی هستند که جهت افزایش مقاومت به ضربه‌پذیری در پلیمرهای سخت و شکننده به آن‌ها اضافه می‌گردند. لاستیک‌ها به دلیل داشتن مقاومت بالا در برابر ضربه، می‌توانند موادی مناسب از این دست به شمار آیند. در اثر ضربه، پلیمرهای سخت به دلیل آن که نمی‌توانند انرژی را تلف نمایند، تمرکز انرژی و ایجاد مرکز تجمع استرس در اثر ضربه باعث شکسته شدنشان می‌شود.

در خصوص ساز و کار شکست مواد پلیمری، تئوری به نام تئوری Griffit وجود دارد که بیان می‌دارد هنگامی که ماده پلیمری می‌شکند که انرژی شکست، بزرگ‌تر و یا مساوی دو برابر انرژی سطح آن پلیمر باشد. به عبارت دیگر

PO

بنابراین اگر به هر نحوی بتوان سمت راست معادله مذکور را افزایش داد، مقدار انرژی لازم برای شکست افزایش یافته است. به بیان دیگر مقاومت ضربه‌ای قطعه بهبود یافته است. لذا در صورتی که بتوان ماده‌ای نرم و لاستیکی شکل به پلیمر شکننده اضافه نمود، در حین ضربه مقداری از انرژی توسط زنجیره‌های لاستیکی جذب می‌گردد و لذا مقاومت ضربه‌ای پلیمر اصلی افزایش می‌یابد. لازم به ذکر است بهبود خواص ضربه‌پذیری پلیمرها می‌تواند در حین واکنش پلیمریزاسیون نیز صورت بگیرد و با افزایش مقدار لاستیک در فرآیند پلیمریزاسیون پلیمر اصلی و به وجود آوردن بلوک‌های لاستیکی در زنجیر اصلی پلیمر از شکنندگی پلیمر اصلی کاست. مثالی از این دست اضافه کردن درصدی مونومر بوتادی‌ان به سیستم پلیمریزاسیون استایرن است. لذا به جای تولید پلی استایرن شکننده، پلی استایرن با قابلیت ضربه‌پذیری بالاتر (High Impact Polystyrene) HIPS تولید می‌گردد.

لیستی از اصلاح­ کننده­ های ضربه­ تجاری موجود در جدول زیر ارائه شده است.

بنابراین اگر به هر نحوی بتوان سمت راست معادله مذکور را افزایش داد، مقدار انرژی لازم برای شکست افزایش یافته است. به بیان دیگر مقاومت ضربه‌ای قطعه بهبود یافته است. لذا در صورتی که بتوان ماده‌ای نرم و لاستیکی شکل به پلیمر شکننده اضافه نمود، در حین ضربه مقداری از انرژی توسط زنجیره‌های لاستیکی جذب می‌گردد و لذا مقاومت ضربه‌ای پلیمر اصلی افزایش می‌یابد. لازم به ذکر است بهبود خواص ضربه‌پذیری پلیمرها می‌تواند در حین واکنش پلیمریزاسیون نیز صورت بگیرد و با افزایش مقدار لاستیک در فرآیند پلیمریزاسیون پلیمر اصلی و به وجود آوردن بلوک‌های لاستیکی در زنجیر اصلی پلیمر از شکنندگی پلیمر اصلی کاست. مثالی از این دست اضافه کردن درصدی مونومر بوتادی‌ان به سیستم پلیمریزاسیون استایرن است. لذا به جای تولید پلی استایرن شکننده، پلی استایرن با قابلیت ضربه‌پذیری بالاتر (High Impact Polystyrene) HIPS تولید می‌گردد.

لیستی از اصلاح­ کننده­ های ضربه­ تجاری موجود در جدول زیر ارائه شده است

پلی الفین‌ها

پلی الفین‌ها را می‌توان با چندین اصلاح‌کننده چقرمه کرد. پلی اتیلن ترکیب شده با پلی اتیلن کلرینه شده و پلی پروپیلن ترکیب شده با حدود ۱۰تا ۴۰ درصد لاستیک EPDM که دارای خصوصیات هوازدگی بهتر از بوتادین یا EVA است. کوپلیمرهای اتیلن-اکتان و پلی اتیلن‌های پلیمریزه شده با استفاده از متالوسن‌ها موثر هستند. ترموپلاستیک الاستومرهای پایه اولفینی (TPO) معمولاً از مخلوط امتزاج ناپذیر پلی پروپیلن ایزوتاکتیک با الاستومر پلی اولفین‌ها تشکیل شده که به عنوان یک اصلاح کننده ضربه عمل می‌کند. چقرمه سازی آن‌ها با استفاده از  اتیلن-پروپیلن، اتیلن-اکتن یا اصلاح کننده‌های اتیلن- هگزان امکان پذیر است.

استفاده گسترده از پلی اُلفین ­ها در کاربردهای مختلف موجب شده است که توجه ویژه­ای به نانوکامپوزیت‌های آنها گردد. مهم­ترین نقیصه‌های این دسته از مواد عبارتند از شکنندگی خصوصاً در دماهای پایین است. افزودن الاستومرها به سبب بهبود چقرمگی آنها می‌تواند در جهت رفع این مشکل بسیار مؤثر باشد. اما این روش به قیمت پایین آمدن مدولشان تمام می‌شود. از این رو سامانه‌های سه جزئی پلی‌الفین/الاستومر/نانوتقویت‌کننده مورد توجه قرار گرفتند که در آنها الاستومرها و تقویت‌کننده‌های با ابعاد نانو به طور هم‌زمان به منظور افزایش چقرمگی و سختی استفاده می‌شوند.

این دسته از مواد در مقایسه با فلزات از وزن کم‌تر، مقاومت زیادتر در مقابل خوردگی و عوامل جوی و از همه مهم‌تر سهولت فرآیند‌پذیری و شکل‌دهی بیش‌تری برخوردار می‌باشد. کاربردهای عمده این مواد در ساخت الکترونیک‌های برقی، موتورهای الکتریکی و ژنراتورها، مبدل‌های حرارتی و… می‌باشد.

در میان پلیمرهای پر مصرف، پلی‌اولفین‌ها و به ویژه از میان آنها پلی‌‌پروپیلن (PP)، به علت داشتن تعادل خوب بین خواص فیزیکی و مکانیکی، فرآیندپذیری آسان، چگالی پایین و قیمت مناسب به طور گسترده‌ای در صنعت مورد استفاده قرار می گیرد. PP یکی از متنوع‌ترین مواد ترموپلاستیکی است که خواص عایقی و مقاومت در برابر رطوبت بسیار خوبی را داراست. این ماده دارای قابلیت تحمل بار برای مدت طولانی در دامنه وسیعی از دما می‌باشد. PP مقاومت خزش برجسته‌ای ندارد ولی مقاومت خستگی آن عالی است. این ماده کاربردهای وسیعی در ساخت الیاف، پمپ‌ها، لوازم خانگی و صنعت خودرو (به عنوان ضربه‌گیرهای خودرو، اجزای داخلی، دستگاه منحرف‌کننده هوا (Spoiler)، سامانه‌های خروج هوا، اجزای زیر کاپوت، خرطومی، بدنه باتری اتومبیل و…) دارد. با این وجود، PP به واسطه شکنندگی (Brittleness)، مقاومت ضربه (Impact Strength) و سفتی (Module) کم در دماهای پایین برای برخی از کاربردها ماده مناسبی محسوب نمی‌شود.

برای جبران این نقیصه معمولاً از کوپلیمرهای PP استفاده‌شده و یا الاستومرها به ویژه کوپلیمرها مانند اتیلن-پروپیلن-مونومر (EPM) و یا از ترپلیمرها مانند اتیلن-پروپیلن-دی‌إن-مونومر (EPDM)، به منظور افزایش چقرمگی (Toughness) به PP افزوده می‌شوند. EPDM یک الاستومر پلی‌الفینی اشباع با کاربردهای وسیع در صنایع مختلف می‌باشد. خواص منحصر به فرد این الاستومر مقاومت بالا در برابر اُزن و اکسیدشدن، دمای انعطاف‌پذیری پایین، پایداری رنگ و توانایی جذب مقادیر زیاد تقویت‌کننده و روغن بدون بو از دست دادن خواص که تمامی این خواص به دلیل ساختار زنجیری اشباع و طبیعت هیدروکربنی این ماده می‌باشد، که آن را به گزینه‌ای مناسب برای کاربردهای مختلف از جمله در بدنه جانبی تایر اتومبیل، روکش سیم، کابل، شیلنگ‌های صنعتی، عایق‌های شیشه، پوشش‌ها و وسایل ورزشی است.

این آلیاژها که ترموپلاستیک چقرمه شده نامیده می‌شوند، دسته‌ای از مواد پلیمری هستند که ترکیبی از ویژگی‌های فرآیندپذیری خوب ترموپلاستیک‌ها در دماهای بالا و خواص فیزیکی الاستومرهای معمولی در دماهای کاربرد را ارائه داده و نقش مهمی را در صنعت پلیمری بازی می‌کنند. این مواد پلیمری کاربرد تجاری بسیاری به ویژه در فضای داخلی و بیرونی خودرو مانند سپر دارند، که در آنها ترموپلاستیک الاستومرهای بر پایه ترپلیمر EPDM پخت (Cure-Vulcanize)‌ نشده و PP اغلب مورد استفاده قرار می‌گیرند.

پلاستیک‌های مهندسی

پلی آمیدها و پلی استرهای اشباع شده را می‌توان با ABS، کوپلیمرهای اتیلن-پروپیلن، ترپلیمرها و لاستیک‌های EPDM گرافت شده با اندرید مالئیک ( جهت افزایش پراکنش و چسبندگی اصلاح کننده) چقرمه کرد. کوپلیمرهای استایرن-بوتادین نیز موثر هستند. مقاومت ضربه آیزود ناچ دار پلی آمید ۶،۶ می‌تواند با اصلاح کننده ضربه ۲۰ برابر افزایش یابد. در حالی که الیاف کوتاه شیشه مقاومت به ضربه را کاهش داده و سبب افزایش مدول می‌شوند. ABS می‌تواند پلی استر اشباع شده و پلی کربنات را چقرمه کند. پلی کربنات را می‌توان با MBS و یا با اضافه کردن لاستیک EPDM گرافت شده به SAN برای بهبود سازگاری، چقرمه کرد.

پلی استایرن

پلی استایرن تمایل زیادی به ترک خوردن دارد و در بیشتر کاربردها به صورت اصلاح شده (پلی استایرن چقرمه شده مقاوم به ضربه یا ABS) استفاده می‌شود. پلی استایرن می‌تواند توسط پلی بوتادین، لاستیک کوپلیمر آکریلونیتریل-بوتادین و کوپلیمرهای بلوکی SBS یا SEBS چقرمه شود. لاستیک را می‌توان قبل و بعد از پلیمریزاسیون استایرن اضافه کرد. دو واکنش رخ می‌دهد، پلیمریزاسیون استایرن و گرافت کوپلیمریزاسیون بین استایرن و بوتادین. مقدار لاستیک اضافه شده بسیار متفاوت است و مقاومت در برابر ضربه می‌تواند از ضریب ۲ به ۴ افزایش یابد. این کار باعث به وجود آمدن اصطلاحات High impact و medium impact می‌شود. با اضافه کردن لاستیک، ظاهر براق پلی استایرن از بین می‌رود، هوازدگی تحت تاثیر باندهای دوگانه (همانطور که قبلا ذکر شد) مطرح می‌شود. همچنین استحکام کششی، مدول و دمای تغییر شکل حرارتی کمی کاهش می‌یابد اما ازدیاد طول در ناحیه شکست به طور قابل توجهی افزایش می‌یابد. هنگامی که منومر استایرن در حضور لاستیک پلی‌ بوتادین با آکریلونیتریل پلیمریزه می‌شود، پلیمر چقرمه ABS حاصل می‌شود. جایگزینی آکریلونیتریل با متیل متاکریلات اصلاح کننده دیگری با نام MBS است. این محصولات می‌توانند به تنهایی یا برای چقرمه سازی پلاستیک‌های شکننده به کار روند. ABS به تنهایی استفاده می‌شود و MBS برای چقرمه سازی PVC سخت به طور گسترده به کار می‌رود. مقدار بالای آکریلونیتریل مقاومت شیمیایی را بهبود بخشیده اما وضوح را کاهش می‌دهد.

پلی وینیل کلراید

همانطور که گفته شده PVC می‌تواند توسط MBS چقرمه شود. همچنین می‌توان از متاکریلات بوتیل اکریلات یا اصلاح کننده‌های هسته-پوسته متاکریلات-پلی بوتادین، ترپلیمر اکتیل-آکریلات-استایرن، ABS، MABS، EVA و یا پلی اتیلن کلرینه شده استفاده کرد. از پلی اتیلن کلرینه شده و آکریلیک‌ها برای PVC در کابردهای ساختمانی نظیر لوله استفاده می‌شود. نیاز به استفاده از اصلاح کننده ضربه در قاب‌های پنجره خصوصاً به هنگام حمل و نقل و نصب احساس می‌شود. ABS مقاومت شیمیایی را بهبود می‌بخشد اما به مقدار بالایی از آن نیاز است و محصول را مات می‌کند، در حالی که MBS محصولات شفاف ارائه می‌دهد و حتی در PVC نرم شده نتایج خوبی را به دنبال دارد. با این حال هر دو اصلاح کننده با مقاومت در برابر هوا متوسط، پلیمر را ترک می‌کنند. از جنبه‌ی مثبت آن، می‌توان به افزایش سرعت ذوب و استحکام مذاب اشاره کرد که مانند یک کمک فرایند در جهت بهبود فرایند عمل می‌کند.

آنچه که در هنگام آلیاژ نمودن این دو پلیمر با یکدیگر مطرح می­گردد، عدم سازگاری آنها با یکدیگر است. به همین دلیل سامانه از خواص مکانیکی ضعیف رنج می‌برد. علت این ناسازگاری قطبیت و ساختار متفاوت بین فازهای ترموپلاستیک و الاستومری است. چسبندگی بین سطحی ضعیف و تنش بین سطحی (Interfacial Tension) بالا بین فازهای ترموپلاستیک و لاستیک، دلایل اصلی ناسازگاری این سامانه‌ها هستند. ناسازگاری میان PP و  EPDMهمچنین ممکن است به تفاوت در میزان بلورینگی (Crystallinity) دو پلیمر نسبت داده شود. از سوی دیگر، به علت سازگاری کم بین فاز لاستیک و ترموپلاستیک و ائتلاف (Coalescence) ذرات پراکنده لاستیک، ترموپلاستیک الاستومرها مورفولوژی ناپایداری دارند. در مطالعات صورت گرفته برای پایدارسازی مورفولوژی آلیاژ، فاز لاستیک به صورت درجا در طول اختلاط مذاب (Melt Mixing) ولکانش (Vulcanization) شد. در حالی که برای بهبود سازگاری و رسیدن به پراکندگی بهتری از ذرات لاستیک، استفاده از سازگارکننده مناسب مانند کوپلیمر بلوکی یا پیوندی گزارش شده است.

نکته‌ای که باید به آن توجه داشت این است که در آلیاژ پلی­ پروپیلن با یک فاز الاستومری نرم، هم‌زمان با افزایش چقرمگی و در نتیجه افزایش مقاومت ضربه، مدول کاهش می­یابد؛ بنابراین استفاده از یک پرکننده نانو (Nano-Filler) در کنار استفاده از الاستومر و تهیه یک آلیاژ نانوکامپوزیتی، می­تواند تعادلی بهینه از چقرمگی و سفتی را ایجاد کند.

به علت شرایط ترمودینامیکی نامطلوب بین دو فاز، بیش‌تر سامانه‌های دو جزئی تمایل دارند تا در آمیزه، فازهای مجزا از هم تشکیل دهند. از این رو چسبندگی ضعیف بین دو فاز در ناحیه فصل مشترک منجر به خواص پایین سامانه می‌گردد. به منظور رفع این مشکل و بهبود خواص سامانه، تلاش‌های برای سازگارسازی پلیمرها و تقویت برهم‌کنش بین آنها صورت گرفته است.

خواص آلیاژهای پلیمری به شدت به ریزساختار (Micro-Structure) و ویژگی‌های فصل مشترک (Interface) وابسته است. وقتی اجزای مخلوط با یکدیگر امتزاج­ پذیر هستند، عمل‌کرد محصول نهایی وابسته به خواص اجزاء به صورت جداگانه و به نسبت اختلاط آن‌هاست. اما از آنجا که اغلب پلیمرها امتزاج­ناپذیر هستند، برای تولید یک محصول با خواص بهینه لازم است ساختار فازی و چسبندگی بین سطحی میان فاز­های آلیاژ کنترل شود. قابل ذکر است که تحول زمانی و توسعه مورفولوژی در این سامانه­ ها وابسته به متغیرهایی مانند تنش بین سطحی اجزا، خواص ریولوژیکی اجزاء، تاریخچه حرارتی و تغییر شکل اعمال­ شده بر آلیاژ می­باشد.

یکی از روش‌های موجود برای کنترل مورفولوژی و بهبود چسبندگی میان فازها، استفاده از پلیمرهایی است که در سامانه‌های دو فازی نقش سازگارکننده (Compatibilizer) را داشته باشد. سازگارکننده ماده‌ای است که وقتی به یک آلیاژ پلیمری اضافه می‌شود سبب افزایش سازگاری اجزای پلیمری آلیاژ می‌شود. این سازگارکننده ­ها یا به صورت جداگانه به سامانه اضافه می­شوند مانند کوپلیمرهای پیوندی (Graft Copolymer) یا کوپلیمرهای دسته‌ای (Block Copolymer) و یا از طریق واکنش میان اجزای آلیاژ، در فصل مشترک فازها ایجاد می­ شوند. استفاده از کوپلیمرهای پیوندی و یا کوپلیمرهای دسته‌ای به طوری که هر جزء از کوپلیمر به یکی از فازها تمایل داشته باشند و در نهایت بتواند مانند یک پل میان دو فاز ارتباط و چسبندگی (Adhesion) مناسب ایجاد نماید، ساده‌ترین راه برای درک ساز و کار سازگارکننده در آلیاژهای پلیمری است. سازگارکننده­ها با قرارگرفتن در فصل مشترک، تنش بین سطحی میان فازها را کاهش می‌دهند و مورفولوژی توسعه­ یافته را پایدار می‌کنند. انتخاب سازگارکننده مناسب برای یک سامانه و همچنین تعیین مقدار بهینه استفاده از سازگارکننده یکی از موضوعات مهم مطرح در صنعت و مراکز تحقیقاتی می‌باشد.

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com 📧

اصلاح کننده‌های ضربه

پلیمرها به طور کلی دو نوع رفتار از خود نشان می دهند، رفتار شکننده (Brittle) و رفتار چقرمه (Toughness). به عبارت دیگر یک پلیمر تحت بار یا می‌شکند و یا پاره می‌شود.

چقرمگی

چقرمگی به صورت توانایی و قابلیت پلیمر در جذب انرژی اعمال شده به آن (سطح زیر نمودار تنش-کرنش) تعریف می‌گردد. پلیمرهای چقرمه در اثر اعمال نیرو تسلیم می‌شوند ولی نمی‌شکنند. در حالی که پلیمرهای شکننده قابلیت انرژی بسیار کمی را دارند و تحت بار می‌شکنند. تنش تسلیم جایی است که ماده پلیمری از محدوده رفتار الاستیک خود خارج شده و شروع به نشان دادن رفتار پلاستیک می‌کند. در نقطه تسلیم، نیرو یا تنش اعمال شده به پلیمر آن‌قدر زیاد شده است که زنجیرهای پلیمری مقاومت مکانیکی خود را از دست می‌دهند. با گذشت از تنش تسلیم و رسیدن به ناحیه بعدی، در حالی که میزان تنش اعمالی ثابت مانده یا کاهش می‌یابد، ازدیاد طول افزایش می‌یابد. در نهایت امکان شکست قطعه با افزایش تنش و یا در تنش ثابت وجود دارد. می‌توان گفت ساز و کار غالب بعد از نقطه تسلیم، لغزش برگشت‌ناپذیر زنجیره‌های پلیمری بر روی هم‌دیگر می‌باشد.

پس چقرمگی به معنای مقاومت ماده در برابر شکستگی و یا قابلیت آن در جذب انرژی مکانیکی بدون شکسته شدن است. چقرمگی از نظر مقداری، با سطح کل زیر منحنی تنش-کرنش برابر است و مشخص کننده مقدار کاریست که می‌توان بدون گسیختگی ماده در ناحیه تغییر فرم پلاستیک، بر روی آن اعمال کرد. به بیانی دیگر، هر چه سطح زیر منحنی تنش-کرنش زیادتر باشد و ماده بر اثر اعمال تنش با ازدیاد طول بیش‌تر، دیرتر دچار شکستگی شود، چقرمه‌تر است.

برخی پلاستیک‌ها، داتاً چقرمه و برخی دیگر ذاتاً ترد و شکننده هستند. البته تأثیر عوامل محیطی و نیز اعمال تنش به ویژه تنش‌های متناوب، ممکن است رفتار پلیمر را در طولانی مدت ترد و شکننده کند.

چقرمه‌ترین پلاستیک‌ها در دمای اتاق عبارتند از: LDPE، LLDPE، نایلون ۶۶، EVA. عموماً پلاستیک‌های فاقد مواد پرکننده با ضربه پذیری بالا، دارای مقادیر چقرمگی بالایی هستند.

جقرمگی یک ماده، نتیجه استحکام کششی خوب و ضربه‌پذیری عالی آن است. هر چه سطح زیر منحنی آزمون تنش-کرنش گشترده‌تر باشد، آن ماده چقرمه‌تر است. نظر به شکل‌های متفاوت منحنی کشش برای مواد مختلف، عوامل دخیل در چقرمه‌تر بودن ماده را می‌توان ادغامی از خواص استحکامی کششی در نقطه شکست، ازدیاد طول در نقطه شکست و منعطف بودن ماده دانست. انعطاف‌پذیری خاصیتی است که توسط میزان ازدیاد طول و یا عکس مدول کششی، بیان می‌شود. در واقع، هر چه مدول ماده کم‌تر باشد، ماده منعطف‌تر بوده و چقرمگی بالاتری خواهد داشت.

شکنندگی

در واقع فقدان چقرمگی بوده و نشان‌دهنده استحکام ضربه‌پذیری کم یا سختی بالای ماده مورد نظر است. پلاستیک‌های تقویت شده با الیاف شیشه و پرشده با مواد معدنی، معمولاً شکننده هستند. شکنندگی ممکن است تابع رطوبت باشد و یا به دلیل تنظیم دمایی نامناسب فرآیند در قطعات پلاستیکی ایجاد شود. در واقع هر قطعه‌ای که تحت اعمال ضربه می‌شکند را نمی‌توان واجد خاصیت ذاتی شکنندگی دانست و با کنترل شرایط خشک کردن مواد قبل از تزریق، کنترل شرایط دما و فشار در حین تزریق و همچنین ایجاد شرایط رطوبتی مناسب بعد از تزریق، می‌توان قطعه‌ای مناسب تولید کرد. مثلاً مواد جاذب آب (Hygroscopic) مانند پلی‌آمیدها، پس از شرایط خشک بعد از خروج قالب، شکننده‌تر از زمانی هستند که با جذب رطوبت محیط به تعادل رسیده‌اند. لذا در فرآیندهای تولید قالپاق خودرو با پلی‌آمید به ویژه در فصول سرما، پس از تولید قطعه، آن را در شرایط رطوبتی و دمایی کنترل شده‌ای قرار می‌دهند تا شکنندگی ایجاد شده در شرایط تولید، جبران شود. طراحی قطعه نیز در پارامتر شکنندگی قطعه تأثیرگذار است و به نوبه خود می‌بایست مورد توجه قرار گیرد. با کنترل شرایط دمایی و زمانی خشک کردن مواد پلیمری مختلف، می‌توان نقش رطوبت در شکنندگی مواد را کاهش داد.

چقرمه‌‌سازی

بهبود خواص مکانیکی پلیمرها از جمله چقرمگی، دلیل اصلی توسعه و ظهور علم آلیاژ است. امروزه تقریباً تمامی پلیمرهای صنعتی به صورت چقرمه مورد استفاده قرار می‌گیرند. از این رو مبحث چقرمه‌سازی رشد و پیشرفت قابل ملاحظه‌ای داشته است.

شکست ترد در پلیمرها

برخی از پلیمرها به جای تسلیم حین تنش مستعد ترک خوردگی هستند، به خصوص در دماهای پایین. این پلیمرها قابلیت انبساط کم و استحکام پایینی دارند. بنابراین آن‌ها به یک اصلاح کننده ضربه نیاز داشته تا مانع رشد ترک شود.

اصلاح کننده‌های ضربه عموماً الاستومری هستند؛ اما گاهی اوقات از ترموپلاستیک‌ها یا مواد معدنی فوق ریز استفاده می‌شود. همه‌ آن‌ها با اتلاف انرژی به طریقی بی‌ضرر و از طریق تمام اجزای سازنده از حرکت و به نوعی رشد ترک جلوگیری می‌کنند. توجه به این نکته مهم است که خود اصلاح کننده ضربه انرژی را جذب نمی‌کند. نقش آن ترویج جذب انرژی به حجم وسیع‌تری از پلیمر، بلافاصله پس از نزدیکی به نوک ترک است. چنین فرمولاسیونی با ترکیب یک اصلاح کننده مؤثر، گرید با مقاومت ضربه بالا یا گرید چقرمه شده نامیده می‌شود. اگرچه تعداد زیادی از پلیمرها می‌توانند از چقرمه شدن بهره شوند، از جمله پلیمرهایی که به اصلاح‌کننده‌های ضربه در دمای محیط نیاز دارند می‌توان به پلی استایرن، پلی وینیل کلراید، پلی‌متیل‌متاکریلات، اپوکسی و پلی‌استرهای ترموست (گرماسخت) اشاره کرد. ترموپلاستیک‌های مهندسی نظیر پلی‌آمید، پلی‌ایمید، پلی‌استرهای اشباع شده، پلی‌استال، پلی‌سولفون و یا پلیمرهای پرکاریرد نظیر پلی‌پروپیلن غالباً برای کاربردهای خودرویی چقرمه می‌شوند. حتی پلیمرهایی که در دمای محیط چقرمه به نظر می‌رسند ممکن است برای دوام بیشتر به اصلاح کننده‌های ضربه نیاز داشته باشند.

تنش مورد نیاز برای شروع یک ترک جدید، قابل مقایسه با تنشی که از بین مواد ادامه می‌یابد (تنش لازم برای رشد ترک) نیست. یک پلیمر ممکن است به راحتی شروع به ترک کند، اما به سختی آن را گسترش داده و یا این که به روشی دیگر آن را دور زند. بنابراین برای طبقه بندی پلیمرها براساس شروع ترک و همچنین رشد آن یادداشت کردن شرایطی که مواد به جای شکستن ترد رفتار تسلیم نشان می‌دهند می‌تواند مفید باشد. آزمایش نمونه‌هایی دارای شکاف ایجاد شده کوچک تیز انتشار ترک را برجسته می‌کند، در حالی که نمونه‌های بدون شکاف شروع و رشد ترک را مشخص می‌کند. پلیمرهای آمورف مانند پلی‌استایرن به طور معمول دارای مقاومت کم در برابر ضربه هستند (چه شکاف باشد چه نباشد)، به هنگام ضربه با ترک برداشتن می‌شکنند؛ زیرا هر دو تنش‌ مورد نیاز برای شروع و انتشار کم‌تر از تنش مورد نیاز برای تسلیم ماده است.

به دسته‌ بعدی از پلیمرها شبه چکش‌خوار گفته می‌شود، زیرا شروع ترک در آن‌ها دشوار بوده اما انتشار آن نیز آسان است. می‌توان آن‌ها را با توجه به استحکام بالای آن‌ها در نمونه‌های بدون شکاف و همچنین استحکام پایین در نمونه‌های دارای شکاف شناخت. آن‌ها دارای درجه حرارت انتقال مشخصه هستند که رفتارشان از شکننده به چکش خوار تغییر می‌کند (این انتقال همیشه با دمای انتقال شیشه‌ای مطابقت ندارد). پلی آمید و پلی اتیلن جز این دسته هستند. مشکلات مربوط به چقرمگی پلی آمید در دماهای پایین ظاهر می‌شود.

دسته‌ی بعدی نظیر پلی‌متیل‌متاکریلات، استال (پلی‌فرمالدهید) و پلی‌وینیل‌کلراید دارای تنش لازم برای شروع ترک و تنش تسلیم مشابه هستند و پیش‌بینی رفتار آن‌ها دشوارتر است. زیرا رفتار شکست می‌تواند چکش‌خوار یا شکننده باشد و به دما و سرعت کرنش بستگی دارد. اکثر پلیمرهای ترموست شکننده هستند، این موضوع غالباً با الیاف تقویت‌کننده پوشیده می‌شود، اما در صورت عدم موجود الیاف، شکنندگی آن‌ها آشکار می‌شود.

مکانیزم‌های چقرمگی

استراتژی معمول هنگام چقرمه‌سازی ترموپلاستیک‌ها، ایجاد ماده‌ای با دو فاز غیر قابل امتزاج با تفاوت قابل توجه در مدول است. فاز پراکنده شده اصلاح کننده ضربه بوده که عموماً الاستومر است. انتقال تنش باید به خوبی از فاز با مدول بالا به فاز با مدول پایین انجام شود. از ملاحظات کلیدی می‌توان به توزیع اندازه فاز پراکنده، خصوصیات مکانیکی و ماهیت فصل مشترک بین دو فاز اشاره کرد.

فاز پراکنده سبب جذب انرژی توسط یک یا چند روش زیر می‌شود:

  • ایجاد ترکچه‌ (تشکیل نواحی حاوی حفره‌های ریز که اغلب در داخل یک سری باند جمع می‌شوند، با چشم غیر مسلح یک سری خطوط موازی کم رنگ را ظاهر می‌کند) (Debonding)
  • تسلیم برشی، شکستگی ذرات الاستومری یا حفره‌زایی ( تشکیل حفره‌های کوچک در ذرات اصلاح کننده‌ی ضربه)

در صورت عدم استفاده از اصلاح کننده ضربه، این مکانیزم فقط در ناحیه نزدیک به نوک ترک در دسترس است و چنین منطقه کوچکی خیلی نمی‌تواند سبب اتلاف انرژی شود. برای جذب انرژی کافی، مکانیزم‌ها باید در بیشتر حجم پلیمر عمل کند. بنابراین ایجاد ترکچه یا تسلیم برشی باید ایجاد شود تا در بسیاری از موقعیت‌ها رخ دهد، نه فقط در ناحیه نزدیک به نوک ترک. به همین دلیل به یک اصلاح کننده ضربه احتیاج است.

تاکنون فرض بر این بوده است که اصلاح کننده ضربه، ذرات کوچک پراکنده شده را داخل فاز پیوسته پلیمر ایجاد می‌کند. این اتفاق با MBS، ABS و اصلاح کننده‌های ضربه آکریلیک می‌افتد. ممکن است یک شبکه ایجاد کند، همان طور که در پلی‌اتیلن کلرینه شده و EVA اتفاق می‌افتد.

ایجاد ترکچه

هنگامی که پلی‌استایرن یا پلی کربنات کشیده می‌شوند، گاهی اوقات خطوط ضعیف عمود بر نیروی اعمال شده قابل مشاهده هستند. در برخی موارد خصوصا پلی استایرن چقرمه شده حاوی اصلاح کننده ضربه ممکن است با سفید شدن همراه باشد. این خطوط تحت بزرگ نمایی بالا شامل نوارها یا مناطقی است که تعداد بسیار زیادی از حفره‌های بسیار کوچک را شامل می‌شوند. تا حدود ۵۰% از حجم تحت تاثیر را اشغال می‌کنند. حفره‌ها نور را پراکنده می‌کنند. مولکول‌های بلند پلیمری باندل‌های آرایش یافته یا فیبریل‌ها را در اطراف ناحیه ترکچه تشکیل می‌دهند و آن‌ها را با یکدیگر نگه می‌دارند. اگرچه در تنش‌های کششی بالا یک یا دو فیبریل ممکن است شکسته شود و ترک ایجاد شود. احتمالاً ترکچه کاملا به یک ترک تبدیل خواهد شد، اما انرژی صرف شکل گیری ترکچه شده است بنابراین استحکام ضربه بالا می‌رود. به این ترتیب برای ایجاد ترکچه، پلیمر باید بتواند به صورت فیبریل تشکیل شود و این به مولکول‌های بلند نیاز دارد. بنابراین پلیمرهایی با وزن مولکولی بسیار کم برای توسعه ترکچه مناسب نیستند. هر آرایش یافتگی قبلی مولکول‌های پلیمر تمایل به ایجاد ترکچه را تحت تأثیر قرار می‌دهد. زیرا جهت تنش اعمالی می‌تواند به موازات آرایش یافتگی غالب (جلوگیری از ایجاد ترکچه) و یا حالت نرمال آن باشد (مشوق ایجاد ترکچه). ایجاد ترکچه حجم تحت تأثیر را افزایش داده بدون آن‌که سطح مقطع خیلی تغییر کند. این حالت ایجاد ترکچه را از تسلیم برشی متمایز می‌کند؛ جایی که عکس این اتفاق می‌افتد.

تسلیم برشی

مشخصه تغییر شکل برشی این است که شکل نمونه به هنگام برش تغییر می‌کند، زمانی که یک جعبه‌ مقوایی مستطیلی کمی از شکل خارج شد اما حجم آن یکسان باقی می‌ماند. تغییر شکل با حرکت مولکول‌های پلیمر نسبت به یکدیگر حاصل می‌شود، به عنوان مثال لیز خوردن صفحه‌ای در فشار بالا.  این کار برای پلیمرهای آمورف نظیر پلی استایرن به دلیل عدم فشردگی منظم و نظم مولکولی ناشی از گره خوردگی و عدم وجود صفحات سر خورنده مناسب دشوار است. تسلیم برشی در پلیمرهای شیشه‌ای آمورف به وسعت کم رخ می‌دهد؛ اما در پلیمرهای نیمه بلورین و چکش‌خوار به راحتی اتفاق می‌افتد. در صورت عدم وجود اصلاح کننده‌ الاستومری، تغییر شکل برشی به مناطقی موضعی که تنش بسیار زیاد است محدود می‌شود (یا جایی که امکان لغزش از نظر ساختاری فراهم است). در این صورت انرژی زیادی اتلاف نمی‌شود. هنگام استفاده از اصلاح کننده‌ی ضربه، تسلیم بسیار گسترده‌تر شده و همراه با حفره‌های کوچک در ذرات الاستومری پراکنده شده است. این حفره‌زایی می‌تواند قبل و بعد از تسلیم پلیمر رخ دهد. تسلیم برشی همیشه یکنواخت نیست و گاهی اوقات به صورت ترجیحی در نواحی خاصی اتفاق می‌افتد.

ایجاد ترکچه همراه با تسلیم برشی

تسلیم برشی و ایجاد ترکچه می‌تواند با یکدیگر رخ دهد و هرکدام می‌توانند غالب باشد. این موضوع بستگی به نوع پلیمر دارد. ایجاد ترکچه در پلی استایرن چقرمه شده بیشتر از تسیلم برشی است، در حالی که هر دو مکانیزم در ABS برجسته است.

معیار سنجش چقرمگی

یکی از مهم‌ترین خواص کاربردی پلیمرها، مقاومت آن‌ها در مقابل ضربه می‌باشد.

روش‌های اندازه‌گیری میزان چقرمگی

برای اندازه‌گیری میزان چقرمگی از آزمون های ضربه استفاده می‌شود. برخی از متداول‌ترین این روش ها عبارتند از:

سقوط گوی: در این آزمون گلوله‌ای با وزن مشخص و از ارتفاع مشخص روی نمونه رها می‌شود. این روش بیش‌تر برای صفحات پلیمری کاربرد دارد.

Izod و Charpy: این دو آزمایش تقریباً شبیه هم انجام می شوند، با این تفاوت که طرز قرارگیری نمونه ها در دستگاه متفاوت است.

عوامل مؤثر بر میزان چقرمگی پلیمرها

میزان چقرمگی پلیمرها با خواص ضربه آن‌ها نسبت مستقیم دارد. علاوه بر عوامل مربوط به ذات ماده، عوامل فیزیکی زیر نیز می‌توانند بر میزان چقرمگی یک ماده پلیمری تأثیر بگذارند:

  • سرعت اعمال بار
  • حساسیت نسبت به شکاف
  • دما
  • جهت‌یافتگی
  • نوع و شرایط فرآیند
  • درصد بلورینگی
  • روش اعمال بار

انواع اصلاح کننده ضربه

الاستومرها غالباً مبتنی بر پلی‌دی‌ان‌ها یا کوپلیمرهای دی‌انی نظیر ۱،۳ بوتادین به کار می‌روند که اولین افزودنی‌های چقرمه کننده‌ موفقیت‌آمیز بودند. این افزودنی‌ها تا حدی مؤثر هستند؛ زیرا مدول آن‌ها ۱۰۰ تا ۵۰۰ برابر کم‌تر از ترمولاستیک مورد نظر است. متأسفانه پلی‌دی‌ان‌ها پیوند‌های شیمیایی دوگانه را معرفی می‌کند که به UV، حرارت و تخریب اکسیداسیونی حساس اند. هیدروژناسیون برخی از آن‌ها را از بین می‌برد. ترکیبات آکریلیک و کوپلیمرهای اتیلن اصلاح‌کننده‌های ضربه محبوب هستند و عموما باند دوگانه ایجاد نمی‌کنند. یک عیب دیگر در اصلاح‌کننده‌های ضربه اولیه وجود دارد. در کنار تخریب احتمالی، اصلاح کننده، فاز پراکنده‌ای حاوی قطرات زیاد با اندازه‌ی کوچک را به صورت یکنواخت فراهم می‌کند که این موضوع سبب کاهش مدول، دمای انتقال شیشه‌ای و دمای تغییر شکل حرارتی (HDT) می‌شود. این اثرات حد مقدار استفاده از اصلاح کننده را مشخص کرده که می‌تواند بدون آسیب به خواص دیگر استفاده شود. مقدار استفاده معمول بین ۳ تا ۱۵ درصد وزنی است اما گاهی به ۷۰ تا ۱۰۰ درصد در اطلاح کننده‌های EVA می‌رسد.

به اصطلاح اصلاح کننده‌های هسته-پوسته تأثیر کمتری بر مدول و HDT دارند. آن‌ها توسط پلیمریزاسیون امولسیونی ساخته می‌شوند و از دو قسمت تشکیل شده‌اند. همان طور که از اسم آن‌ها مشخص است، پوسته‌ی بیرونی آکریلیک سخت مانند PMMA است که در تماس مستقیم با پلیمری است که نیاز به چقرمه شدن دارد. این دو می‌بایست سازگار باشند (در مورد کوپلیمرهای SAN، سازگاری به قطبیت و مقدار نیتروژن کوپلیمر بستگی دارد). در داخل پوسته، هسته‌ پلیمری انعطاف پذیرتر و جذب کننده انرژی مانند پلی بوتادین دارای اتصلات عرضی، لاستیک طبیعی، کوپلیمر استایرن-بوتادین و بوتیل آکریل قرار دارد. از مخلوط شدن فاز الاستومری با فاز پیوسته جلوگیری می‌کند (پلیمر چقرمه می‌شود و مدول آن را کاهش می‌دهد). اندازه ذرات الاستومری بهینه برای چقرمه سازی وابسته به پلیمر است. در صورت گسترش ایجاد ترکچه، ABS به اندازه ذرات حدود ۵۰۰ نانومتر تا ۱ میکرون نیاز دارد، این در حالی است که HIPS به ۲ تا ۴ میکرون نیاز دارد و حتی می‌تواند از ذرات بزرگ تر نیز بهره‌مند شود. توزیع اندازه ذرات دو قله‌ای ممکن است در برخی موارد مفید باشد تا هم‌زمان دو ساز و کار جذب انرژی را تسهیل کند.

در صورت سازگار نبودن پلیمر و اصلاح کننده ضربه به یک سازگارکننده نیاز است. انتخاب آن به هر دو ماده اصلی تشکیل‌‌دهنده بستگی خواهد داشت. اتیلن-اکتان مالئیکه شده و SEBS مالئیکه شده اغلب مورد استفاده قرار می‌گیرد. زیرا به فعالیت اصلاح کننده ضربه کمک می‌کنند. هنگامی که پلی آمید ۶ با ABS مخلوط می‌شود سازگار کننده می‌تواند کوپلیمر استایرن مالئیک اندرید، پلی‌متیل‌متاکریلات با مالئیک اندرید و یا پلی‌متیل‌متاکریلات با گلایسیدیل متاکریلات باشد. گریدهای بسیار ریز از کلسیم‌کربنات یا سیلیکا تا حدی استحکام ضربه را بهبود می‌بخشد، برخلاف گریدهای درشت، سبب کاهش مقدار اصلاح کننده ضربه مورد نیاز می‌شود. بسیاری از اصلاح کننده‌ها به خصوص در پلی وینیل کلراید می‌توانند به عنوان روان کننده یا کمک فرآیند عمل کنند.

افزودنی‌های اصلاح کننده‌های ضربه ( این لیست جامع نیست)

  • پلیمرهای پلی‌دی‌انی نظیر استارین -بوتادین، ایزوپرن-استایرن گرافت یا بلاک کوپلیمرها
  • کوپلیمرهای استایرن- بوتادین کربوکسیله شده
  • کربوکسیله شده یا کوپلیمرهای بوتادین-آکریلونیتریل عامل دار شده
  • کوپلیمرهای رندوم اتیلن-پروپیلن
  • متاکریلات-بوتیل-آکریلات
  • متیل متاکریلات-بوتادین- استایرن (MBS)
  • ABS
  • EPDM
  • SEBS
  • اتیلن-اکتان و کوپلیمرهای اتیلن وینیل استات
  • کوپلیمرهای اکتیل آکریلات استایرن
  • پلی (بیوتیل اکریلات)
  • پلی یورتان‌های گرمانرم
  • پلی اتیلن کلرینه شده با ۳۰تا ۴۰ درصد کلر
  • الاستومرهای پلی اتیلنی (با استفاده از متالوسن‌ها) یا کوپلیمرهای اتیلن با بوتن یا اکتان
  • پلی سیلوکسان‌ها
  • پلی اتر ایمیدها

برخی از اصلاح کننده‌های بالا به ویژه MBS به یک آنتی اکسیدان نیاز دارند.

روش‌های اختلاط پلیمر با اصلاح کننده: الف) اختلاط مستقیم ب) اضافه کردن لاستیک به منومر و سپس پلیمریزاسیون منومر

مهم این است که در حین عملیات فرآیند از جدا شدن دو فاز جلوگیری کنید. این عمل توسط انتخاب اصلاح کننده با سازگاری مناسب با پلیمر، اضافه کردن سازگار کننده و یا اصلاح پلیمر با فرآیند پلیمریزاسیون گرافت انجام می‌شود. این دوجز سازنده نباید خیلی سازگار باشند زیرا باید دو فاز را در محصول نهایی تشکیل دهند.

 استفاده از پلیمرهای شکننده، مانند پلی­ وینیل ­کلراید (PVC) و پلی­ استایرن، تا قبل از تولید و توسعه­ پلیمرهای لاستیکی-چقرمه در سال­ های ۱۹۳۰ تا ۱۹۴۰، بسیار محدود بود. PVC به وسیله­ افزودن مقادیر کمی اکریلونیتریل رابر و دیگر مواد الاستومری چقرمه شد. هدف رایج استفاده از اصلاح­ کننده­ های ضربه، جذب انرژی ضربه به وسیله­ القای تغییر شکل پلاستیک قبل از ایجاد و رشد ترک است. ویژگی ­های عمومی چنین افزودنی­ هایی را می ­توان به صورت زیر خلاصه کرد:-Tg پایین-اثرگذاری در مقادیر کم-اندازه­ی ذره و توزیع اندازه­ ذره­ بهینه-چسبندگی خوب به ماتریس ترموپلاستیکی اساساً دو نوع ساختار در سیستم­ های پلیمری مقاوم به ضربه برای ساختارهای پلیمری سخت وجود دارد، که در ساختار و مکانیسم شکست با هم متفاوتند:-ذرات الاستومری کروی (ABS، MBS، اکریلیک ­ها)-فاز الاستومری پراکنده­ شبکه ­ای لانه زنبوری کوپلیمرهای گرافت شده­ بر پایه­ بوتا دی­ ان یکی از پرمصرف ­­­­­ترین خانواده­ های اصلاح ­کننده­ های ضربه را تشکیل می ­دهند. موفقیت آن­ ها در بازار عمدتاً به دلیل Tg پایینشان است (۸۰- درجه­ ساتنی­گراد). با این حال، حضور باندهای دوگانه در پلیمرهای دی­ انی می ­تواند باعث القای تخریب حرارتی و اکسیداسیونی در دماهای تولید و در مواجهه با اکسیژن و اشعه­ UV شود. بنابراین، این تأثیرات، باید با استفاده از آنتی­ اکسیدانت ­های مناسب به حداقل برسند. اصلاح ­کننده ­های ABS. Daly در سال ۱۹۵۲ ترکیبات اکریلونیتریل-بوتادی­ان-استایرن و اکریلونیتریل در حضور پلی­ بوتادی ­ان را تولید کرد و یک ترپلیمر گرافت شده را ایجاد کرد. هر کدام از اجزا به نحوی در اثرگذاری این ترکیب به عنوان اصلاح­ کننده­ ضربه مشارکت دارند: بوتادی­ ان فراهم کننده­ فاز نرم رابری است در حالی که استایرن و اکریلونیتریل قطبیت لازم برای سازگاری بین سطحی با پلیمری که این ماده در آن مورد استفاده قرار می ­گیرد را فراهم می­ آورند. هم­چنین، ویژگی­ های جانبی دیگری نیز وجود دارند که حائز اهمیت هستند: زنجیره­ بوتادی‌ان نسبت به تخریب در اثر UV حساس بوده و به محافظت نیاز دارد. در حالی که، اکریلونیتریل ایجاد مقاومت شیمیایی و سختی می­ کند. در این قاب، پلیمرهای ABS ترموپلاستیک ­های مهندسی هستند که فرآیندپذیری خوب، چقرمگی عالی، و پایداری حرارتی مطلوبی را از خود نشان می­ دهند و در بسیاری از بخش ­ها از جمله لوازم خانگی، ساختمان­ سازی و سازه­ ها، الکترونیک، خودرو و بسیاری موارد دیگر کاربرد یافته ­اند. اصلاح­ کننده ­های MBS. MBS (متاکریلات-بوتادی­ان-استایرن) مشابه نمونه ­های ABS هستند و به طور معمول، یا از طریق کوپلیمریزاسیون استایرن و متیل­ متاکریلات در حضور پلی­ بوتا­دی ­ان و یا با پلیمریزاسیون متیل­ متاکریلات در حضور لاستیک استایرن­ بوتا دی­ ان تولید می­ شوند. وجود بوتادی­ ان این ماده را مستعد تخریب با اشعه­ UV می ­کند و به همین علت، استفاده از آن محدود به کاربردهای داخلی می­ شود. عدم وجود اکریلونیتریل شفافیت محصولات را ارتقا داده اما باعث کاهش مقاومت شیمیایی می ­شود. اصلاح­ کننده­ های ضربه­ MBS چقرمگی لازم را برای پلیمرهایی از جمله  PVC فراهم می ­آ ورند تا مناسب کاربردهای بسته ­بندی در هر دو حالت شفاف و غیر شفاف (از جمله بطری­ های مقاوم به ضربه، ترانک ­های الکتریکی (trunking)، ورق­ ها و فیلم­ های بسته­ بندی، و …) شوند. اصلاح­ کننده ­های ضربه­ MBS اثر اصلاح­ کنندگی ضربه­ قابل توجه را در دماهای پایین نشان می­ دهند. با این حال، در بسیاری موارد، افزودن مقدار زیادی از اصلاح ­کننده­ MBS جهت تقویت استحکام ضربه مورد نیاز است.  اصلاح ­کننده­ های اکریلیک احتمالاً پرکاربردترین دسته­ اصلاح ­کننده­ های ضربه هستند چراکه بر مشکلات مرتبط با مقاومت در شرایط آب­ و هوایی که معمولا در مورد ABS و MBS مطرخ است، غلبه کرده ­اند. این دسته از اصلاح ­کننده ­ها معمولاً ترپلیمرهای متیل ­متاکریلات-بوتیل­اکریلات-استایرن یا متیل­ متاکریلات-اتیل­ هگزیل ­اکریلات-استایرن هستند. جدا از پایداری نوری بهبودیافته، این مواد هم­چنین مقاومت حرارتی خوب، پایداری گرمایی خوب و استحکام ضربه­ بالایی را ارائه می ­دهند. لیستی از اصلاح ­کننده ­های ضربه­ تجاری موجود در جدول زیر ارائه شده است. 

UN

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com 📧