وضعیت ورود
درحال حاضر شما وارد سایت نشده اید.
آمار بازدیدکنندگان
  • کاربران حاضر: 0
  • بازدید امروز: 2,244
  • بازدید ماه: 72,977
  • بازدید سال: 882,069
  • کل بازدیدکنند‌گان: 242,649
قیمت روز

UV

نوآوری در فیلم‌های باغبانی

  • روش‌هایی برای بهبود کیفیت رسیدن نور به محصولات زراعی!
  • استفاده از مواد زیست‌تخریب‌پذیر برای ساخت فیلم‌های مالچ که می‌توان در خاک رها کرد!

 

فرصتی برای موفقیت: پیشرفت‌ها در فیلم کشاورزی

نمایندگان در کنفرانس اخیر فیلم‌های کشاورزی سازمان‌دهی شده توسط AMI در مورد یک گستره طیف فناوری‌های اخیر خبر می‌دهد. از پیشرفت‌ها در گل‌خانه و فیلم مالچ تا محصولات جدید برای کنترل انتشار نور. Michael McLaren دانشمند محقق در Ingenia Polymers این تحلیل را به نمایندگان گفت و آزمایش می‌تواند به توسعه مستربچ‌های کمک‌فرآیند پلیمر (PPA) کمک کند. PPAها مانند فلوروپلیمرها معمولاً به مذاب پلیمرها اضافه می‌شوند و سطوح فلزی اکسترودر و دای را برای کاهش اصطکاک می‌پوشاند. عمل‌کرد آن‌ها می‌تواند توسط سایر فاکتورها نظیر وجود سایر مواد افزودنی در مخلوط (آمیزه) تحت تأثیر قرار گیرد. او اظهار داشت: افزودن PPA به عنوان بخشی از مستربچ می‌تواند به اطمینان از صحت اندازه ذرات کمک کند. یک آزمون PPA معمول در فرآیند فیلم، آزمون زمان به شفافیت رسیدن (TtC) شکست مذاب است که زمان را از معرفی PPA تا حذف کامل شکست مذاب اندازه گیری می‌کند. برای فیلم کشاورزی آزمون برهم‌کنش‌های بالقوه با دیگر افزودنی‌ها مانند تثبیت‌کننده‌های بازدارنده نور آمین و آنتی‌بلاک‌ها هم مهم است. در یک آزمایش معمول یک پلیمر آزمایشی (LLDPE) در معرض نرخ‌های برشی مختلف قرار می‌گیرد و بارگذاری PPA به تدریج افزایش می‌یابد. به گفته‌ McLaren در آزمایش گریدهای جدیدتر PPA کاهش قابل توجه TtC نسبت به محصولات قدیمی مشاهده شد. فرمولاسیون ITZ-433 آن مطابق با عمل‌کرد PPAهای موجود و با اقتصاد بهتر طراحی شده است. او گفت: آزمون TtC و سایر ارزیابی‌ها به ما اجازه توسعه مستربچ PPA جدید را داده است. این طراحی شده است تا عمل‌کردی مشابه با پیشنهاد فعلی با قیمت بهتر داشته باشد.

بهبود فیلم

Amy Laird مشتری و مهندس توسعه برنامه در Exonmobil توضیح داد که چگونه فیلم‌های گل‌خانه‌ای بهبود یافته می‌تواند بازده محصول و فصل رشد را گسترش دهد. او بیان کرد: بازار انواع این فیلم‌ها با تسلط بر مصرف چین به سرعت در حال گسترش است. چندین ماده Exxonmobil از جمله Exceed plastomers را می‌توان در فرمولاسیون فیلم کشاورزی استفاده کرد. Laird گفت: این نوع از فیلم‌ها آزمون‌های پیرسازی از جمله پیرشدگی خشک و مرطوب را پشت سر گذاشته است. هر دو در معرض دمای ۳۸ درجه سلسیوس و رطوبت ۵۰% هستند. در پیرسازی خشک، فیلم در محلول اسید سولفور (H2So3) و پرمترین (permethrin) غوطه‌ور شده که هر ۱۰۰۰ ساعت تکرار می‌شود. در پیرسازی مرطوب ۱۰۲ دقیقه در شرایط خشک و ۱۸ دقیقه اسپری آب را برای کل زمان پیرسازی به دنبال دارد. هر دو آزمون پیرسازی خشک و مرطوب عمل‌کرد برتری را برای فیلم‌های نازک‌تر نشان داده که کارایی پلیمرها را نظیر Exceed ترکیب می‌کند.

فیلم مالچ جدید

Kristin Taylor مدیرعامل رادیکال پلاستیک گفت: نمایندگان فناوری جدید شرکت‌اش به ساخت فیلم مالچ زیست‌تخریب‌پذیر اقدام کرده‌اند. این شرکت پلاستیک‌های رایج را با کاتالیزور معدنی ترکیب کرده است که می‌گوید پلیمر زیست‌تخریب‌پذیر را در محیط طبیعی ارائه می‌دهد. کاتالیزور در مرحله آمیزه‌سازی در پلیمر جهت ساخت گرانول گنجانده شده است. او بیان کرد: تجزیه آن‌ها دو مرحله است: شیمیایی و بیولوژیکی. در مرحله شیمیایی کاتالیزور اجازه اکسیداسیون کامل پلیمر را می‌دهد و میکروپلاستیک ایجاد نمی‌کند. در مرحله بیولوژیکی میکروب‌ها مواد را به زیست توده، CO2، آب و مواد معدنی کمیاب متابولیزه می‌کند. کشاورزی بازار اولیه هدف برای این تکنولوژی است. این می‌تواند اطمینان دهد که فیلم مالچ را به جای جمع‌آوری و بازیافت می‌توان در خاک رها کرد تا پوسیده شود. در عین حال با استفاده از یک پلاستیک معمولی به جای پلاستیک زیستی معمولاً به خواص مکانیکی بهتر مانند استحکام کششی منجر می‌شود. این در بیش از ۱۵ مکان در ایالات متحده آمریکا از شرق تا ساحل غربی آزمایش شده است. بعد از دو ماه فیلم رادیکال نشانه‌هایی از تغییر شیمیایی را نشان داد در حالی که هیچ چیزی در فیلم متعارف وجود نداشت. در آزمایشگاه هیچ اثر سمیت زیست محیطی نشان نداد و الزامات ویژگی فیزیکی را گذراند. این شرکت قصد دارد مواد زیست‌تخریب‌پذیر خود را از طریق منشور نسل بعدی فیلم‌ها به فروش برساند.

مزارع توت‌فرنگی

Untitled

محققان بیان می‌کنند پرورش‌دهندگان آمریکایی توت‌فرنگی می‌گویند تکنولوژی فیلم مالچ زیست‌تخریب‌پذیر شناخته نشده است.

محققان دانشگاه واشنگتن (WSU) همچنین روی فیلم مالچ با قابلیت تجزیه زیستی کار می‌کنند و جذابیت آن‌ها را برای پروش‌دهندگان توت‌فرنگی ارزیابی کرده‌اند. Lisa Wasko DeVetter دانشیار علم باغبانی در WSU گفت: مالچ‌های قابل تجزیه در خاک (BDM) شامل مواد اولیه مختلف و افزودنی‌هایی هستند که معمولاً ۹۰% تجزیه زیستی طی مدت ۲ سال حاصل می‌شود. به طور کلی آن‌ها مزایایی مشابه مالچ پلی‌اتیلن را دارند با این تفاوت که نیازی به حذف آن در پایان فصل نیست. کالیفرنیا بزرگ‌ترین تولیدکننده توت‌فرنگی در ایالات متحده است. حدود ۳۲۰۰۰ هکتار فیلم مالچ برای رشد آن‌ها استفاده می‌شود که معمولاً فیلم مالچ مبتنی بر پلی‌اتیلن است. WSU از ۴۳ پرورش‌دهنده توت‌فرنگی در کالیفرنیا نظرسنجی کرد که مشخص گردید اکثر آن‌ها از مالچ پلی‌اتیلن استفاده می‌کرده و تنها ۳۰% از آن‌ها، آن را بازیافت می‌کردند. اگرچه بسیاری بیان کردند که فیلم مالچ پلی‌اتیلن نیازمند بازیافت مؤثرتر است اما تنها ۱۰% اظهار کردند که استفاده از مالچ BDM در آینده بسیار محتمل است. به گفته‌ Devetter پرورش‌دهندگان توت‌فرنگی در کالیفرنیا علاقه‌مند به BDMها و کاهش تولید زباله‌های پلاستیکی هستند اما در حال حاضر فناوری BDMها را غیر قابل اثبات می‌دانند.

مدیریت آفات

Ralf Dujardin معاون بازاریابی و نوآوری در Imaflex توضیح چگونگی انتشار کنترل شده سیستم‌های مالچ را که می‌تواند به ایجاد مدیریت امن‌تر آفت کمک کند، بیان کرد. او گفت که می‌توان از فیلم‌های مالچ برای سموم دفع آفات استفاده کرد (هدف قرار دادن در جایی که دقیقاً مورد نیاز است). این به کاهش مقدار مورد نیاز و توقف از پخش شدن در جاهای غیر لازم کمک می‌کند. او گفت بیش از ۹۰% از آفت‌کش‌های مورد استفاده امروزی به هدف مورد نظر خود نمی‌رسند. یک راه حل این مشکل استفاده از فیلم تدخین (fumigation) پلاستیکی است.

توضیح: تدخین (کنترل آفات) به انگلیسی:(Fumigation)  روشی برای کنترل آفات است. در این روش، فضایی که در آن آفت باید از بین رود، به طور کامل پر از آفت‌کش‌های گازی می‌شود. تدخین برای کنترل آفات در خاک، دانه‌های غلات، در فرآوری محصولات صادرات و واردات برای جلوگیری از هجوم آفاتی است که درون موادی مانند چوب زندگی می‌کنند مثل موریانه چوب خشک و سوسک چوب‌خوار است.

در اینجا یک ماده فعال در فیلم مالچ چند لایه گنجانده شده است. مواد تشکیل‌دهنده مانند یک علف‌کش بوده و سپس از لایه فیلم به داخل خاک شسته می‌شود. او به چگونگی فیلم این شرکت Advaseal HSM برای بهبود کنترل علف‌های هرز و بالابردن بازده محصولات اشاره کرد، در حالی که از مواد تدخینی کم‌تری استفاده می‌شود. از آن زمان تاکنون یک محصول بهبود یافته به نام Advanseal HG  توسعه یافته است که یک طیف گسترده از پلاستیک آفت‌کش بوده که قارچ‌کش، (nematicide) و حشره‌کش را آزاد می‌کند. در تولید گوجه‌فرنگی آزمایش شده است و منجر به عمل‌کرد بیش‌تر و میوه‌های بزرگ‌تر شد. Dujardin گفت: به طور کلی می‌تواند مقدار آفت‌کش مورد نیاز را تا ۹۹% کاهش دهد در حالی که به تجهیزات و کارگر کم‌تری نیاز دارد. 

وظیفه نور

نور خورشید عامل مهمی در رشد گیاه است، اما دریافت نور از قسمت صحیح طیف عاملی بحرانی است. Michael Burrows معاون بازرگانی توسعه در UBiQD توضیح داد که چگونه فیلم‌های گل‌خانه‌ای “تغییر نور خورشید” این شرکت می‌تواند در به حداکثر رساندن محصول کمک کند. یکی از اهداف، کاهش میزان نور آبی و UV با حفظ نور سبز است که عمیقاً در برگ‌ها نفوذ می‌کند. نور نارنجی و قرمز همچنین مهم است زیرا در به حداکثر رساندن فتوسنتز کمک می‌کند (تا زمانی که به اندازه کافی نور آبی و سبز وجود داشته باشد). این را می‌توان از طریق پوشش‌های مختلف نظیر فیلم یا شبکه (توری) رنگی و فیلم شب‌تاب به دست آورد. به عنوان مثال یک فیلم شب‌تاب نور را در یک طول موج مشخص جذب کرده و نور با انرژی کم‌تر را ساطع می‌کند. یک اثر مشابه می‌تواند تبدیل نور با انرژی بالا را به انرژی گرمایی مشاهده کند. فیلم UbiGro این شرکت بر گوجه‌فرنگی مورد آزمایش قرار گرفت و راندمان استفاده از نور ۲۳% و وزن محصولات برداشت شده را ۶% افزایش می‌دهد. به گفته‌ Burrows پوشش‌های انتخابی نوری مقرون به صرفه هستند. آزمایش‌های گل‌خانه در حال انجام نشان می‌دهد که عمل‌کرد گیاه در حال افزایش است.

Untitled

“تغییر دادن نور” فیلم‌های گل‌خانه به تقویت تولید گوجه‌فرنگی کمک کرده است.

لوله‌های انعطاف‌پذیر

Abert zhang مدیر فنی Berry global اظهار داشت که لوله‌های پلاستیکی بلند می‌تواند برای ذخیره سیلو و غلات جواب‌گو باشد. ذخیره سیلو و غلات برای خوراک حیاتی است که این امر به عنوان مثال با بسته‌بندی در کیسه انجام می‌شود. zhang افزود: بسته‌بندی آن‌ها در کیسه‌های کشیده کارآمدتر خواهد بود؛ همان طور که آن‌ها فضای کم‌تری را اشغال کرده و محتویات محافظت شده و منجر به اتلاف خوراک کم‌تر می‌شود. او بیان کرد که Agflex شرکت‌اش دفع‌کننده جانوران جونده که می‌تواند از طیف گسترده‌ای از حیات وحش از جمله آهو، خرس و پرندگان محافظت کند. کیسه‌های غلات رایج عموماً توسط حیوانات کوچکی همچون موش دچار آسیب می‌شوند. ساخت پلاستیک‌های کشاورزی پایدار منجر به ماندگاری طولانی‌تر، بازیافت و استفاده مجدد آسان‌تر می‌شود.

Diffused film

Luigi Pezzon متخصص پلاستیک در PATi، جزئیات یک مطالعه موردی را برای ایجاد یک فیلم diffused برای گل‌خانه حلقه‌ای (polytunnel) ارائه کرده است. این کار به منظور جلوگیری از تنش گرمایی در محصولات زراعی ایجاد شده است. هدف از ساخت این فیلم کاهش مشکلات کیفی در تولید انگورفرنگی (red currant) و تمشک سیاه (raspberry) بود. مطابق گفته Pezzon افزودن یک ماده خام خاص یا استفاده از فیلم diffuse اضافی امکان کاهش مشکلات کیفی ناشی از تنش گرمایی را ممکن می‌سازد. سازمان تحقیقاتی هلندی vlamings تحقیق کرد که چه نوع فیلم‌هایی برای کاهش تنش گرمایی مورد نیاز بوده که توسط تأمین‌کنندگان مختلف عرضه شده است. ثبت‌کننده داده‌ها (Data loggers) جهت نظارت بر دما و رطوبت استفاده شد. بررسی فیلم‌ها شامل فیلم‌های diffused استاندارد، یک فیلم diffused cool استاندارد و یک فیلم فوق پراکنده Pati’s H75 بودند. به عنوان مثال، فیلم Pati در گل‌خانه دما را تا ۴۲ درجه (حد تنش گرمایی) برای بیش از ۱۰ ساعت نگه می‌دارد. تنها cool film  دارای کارایی بالاتر بود. برای تمشک سیاه، فیلم Pati و diffused cool حداکثر دمای مشابه را در گل‌خانه نگه داشتند اما فیلم Pati با سرعت کم‌تری در صبح گرم می‌شود در حالی که فیلم رقیب بعدازظهرها با سرعت کم‌تر گرم شده بود. هر دو فیلم منجر به کم‌ترین تعداد میوه آسیب دیده شدند.

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com

اصلاح کننده‌های ضربه

پلیمرها به طور کلی دو نوع رفتار از خود نشان می دهند، رفتار شکننده (Brittle) و رفتار چقرمه (Toughness). به عبارت دیگر یک پلیمر تحت بار یا می‌شکند و یا پاره می‌شود.

چقرمگی

چقرمگی به صورت توانایی و قابلیت پلیمر در جذب انرژی اعمال شده به آن (سطح زیر نمودار تنش-کرنش) تعریف می‌گردد. پلیمرهای چقرمه در اثر اعمال نیرو تسلیم می‌شوند ولی نمی‌شکنند. در حالی که پلیمرهای شکننده قابلیت انرژی بسیار کمی را دارند و تحت بار می‌شکنند. تنش تسلیم جایی است که ماده پلیمری از محدوده رفتار الاستیک خود خارج شده و شروع به نشان دادن رفتار پلاستیک می‌کند. در نقطه تسلیم، نیرو یا تنش اعمال شده به پلیمر آن‌قدر زیاد شده است که زنجیرهای پلیمری مقاومت مکانیکی خود را از دست می‌دهند. با گذشت از تنش تسلیم و رسیدن به ناحیه بعدی، در حالی که میزان تنش اعمالی ثابت مانده یا کاهش می‌یابد، ازدیاد طول افزایش می‌یابد. در نهایت امکان شکست قطعه با افزایش تنش و یا در تنش ثابت وجود دارد. می‌توان گفت ساز و کار غالب بعد از نقطه تسلیم، لغزش برگشت‌ناپذیر زنجیره‌های پلیمری بر روی هم‌دیگر می‌باشد.

پس چقرمگی به معنای مقاومت ماده در برابر شکستگی و یا قابلیت آن در جذب انرژی مکانیکی بدون شکسته شدن است. چقرمگی از نظر مقداری، با سطح کل زیر منحنی تنش-کرنش برابر است و مشخص کننده مقدار کاریست که می‌توان بدون گسیختگی ماده در ناحیه تغییر فرم پلاستیک، بر روی آن اعمال کرد. به بیانی دیگر، هر چه سطح زیر منحنی تنش-کرنش زیادتر باشد و ماده بر اثر اعمال تنش با ازدیاد طول بیش‌تر، دیرتر دچار شکستگی شود، چقرمه‌تر است.

برخی پلاستیک‌ها، داتاً چقرمه و برخی دیگر ذاتاً ترد و شکننده هستند. البته تأثیر عوامل محیطی و نیز اعمال تنش به ویژه تنش‌های متناوب، ممکن است رفتار پلیمر را در طولانی مدت ترد و شکننده کند.

چقرمه‌ترین پلاستیک‌ها در دمای اتاق عبارتند از: LDPE، LLDPE، نایلون ۶۶، EVA. عموماً پلاستیک‌های فاقد مواد پرکننده با ضربه پذیری بالا، دارای مقادیر چقرمگی بالایی هستند.

جقرمگی یک ماده، نتیجه استحکام کششی خوب و ضربه‌پذیری عالی آن است. هر چه سطح زیر منحنی آزمون تنش-کرنش گشترده‌تر باشد، آن ماده چقرمه‌تر است. نظر به شکل‌های متفاوت منحنی کشش برای مواد مختلف، عوامل دخیل در چقرمه‌تر بودن ماده را می‌توان ادغامی از خواص استحکامی کششی در نقطه شکست، ازدیاد طول در نقطه شکست و منعطف بودن ماده دانست. انعطاف‌پذیری خاصیتی است که توسط میزان ازدیاد طول و یا عکس مدول کششی، بیان می‌شود. در واقع، هر چه مدول ماده کم‌تر باشد، ماده منعطف‌تر بوده و چقرمگی بالاتری خواهد داشت.

شکنندگی

در واقع فقدان چقرمگی بوده و نشان‌دهنده استحکام ضربه‌پذیری کم یا سختی بالای ماده مورد نظر است. پلاستیک‌های تقویت شده با الیاف شیشه و پرشده با مواد معدنی، معمولاً شکننده هستند. شکنندگی ممکن است تابع رطوبت باشد و یا به دلیل تنظیم دمایی نامناسب فرآیند در قطعات پلاستیکی ایجاد شود. در واقع هر قطعه‌ای که تحت اعمال ضربه می‌شکند را نمی‌توان واجد خاصیت ذاتی شکنندگی دانست و با کنترل شرایط خشک کردن مواد قبل از تزریق، کنترل شرایط دما و فشار در حین تزریق و همچنین ایجاد شرایط رطوبتی مناسب بعد از تزریق، می‌توان قطعه‌ای مناسب تولید کرد. مثلاً مواد جاذب آب (Hygroscopic) مانند پلی‌آمیدها، پس از شرایط خشک بعد از خروج قالب، شکننده‌تر از زمانی هستند که با جذب رطوبت محیط به تعادل رسیده‌اند. لذا در فرآیندهای تولید قالپاق خودرو با پلی‌آمید به ویژه در فصول سرما، پس از تولید قطعه، آن را در شرایط رطوبتی و دمایی کنترل شده‌ای قرار می‌دهند تا شکنندگی ایجاد شده در شرایط تولید، جبران شود. طراحی قطعه نیز در پارامتر شکنندگی قطعه تأثیرگذار است و به نوبه خود می‌بایست مورد توجه قرار گیرد. با کنترل شرایط دمایی و زمانی خشک کردن مواد پلیمری مختلف، می‌توان نقش رطوبت در شکنندگی مواد را کاهش داد.

چقرمه‌‌سازی

بهبود خواص مکانیکی پلیمرها از جمله چقرمگی، دلیل اصلی توسعه و ظهور علم آلیاژ است. امروزه تقریباً تمامی پلیمرهای صنعتی به صورت چقرمه مورد استفاده قرار می‌گیرند. از این رو مبحث چقرمه‌سازی رشد و پیشرفت قابل ملاحظه‌ای داشته است.

شکست ترد در پلیمرها

برخی از پلیمرها به جای تسلیم حین تنش مستعد ترک خوردگی هستند، به خصوص در دماهای پایین. این پلیمرها قابلیت انبساط کم و استحکام پایینی دارند. بنابراین آن‌ها به یک اصلاح کننده ضربه نیاز داشته تا مانع رشد ترک شود.

اصلاح کننده‌های ضربه عموماً الاستومری هستند؛ اما گاهی اوقات از ترموپلاستیک‌ها یا مواد معدنی فوق ریز استفاده می‌شود. همه‌ آن‌ها با اتلاف انرژی به طریقی بی‌ضرر و از طریق تمام اجزای سازنده از حرکت و به نوعی رشد ترک جلوگیری می‌کنند. توجه به این نکته مهم است که خود اصلاح کننده ضربه انرژی را جذب نمی‌کند. نقش آن ترویج جذب انرژی به حجم وسیع‌تری از پلیمر، بلافاصله پس از نزدیکی به نوک ترک است. چنین فرمولاسیونی با ترکیب یک اصلاح کننده مؤثر، گرید با مقاومت ضربه بالا یا گرید چقرمه شده نامیده می‌شود. اگرچه تعداد زیادی از پلیمرها می‌توانند از چقرمه شدن بهره شوند، از جمله پلیمرهایی که به اصلاح‌کننده‌های ضربه در دمای محیط نیاز دارند می‌توان به پلی استایرن، پلی وینیل کلراید، پلی‌متیل‌متاکریلات، اپوکسی و پلی‌استرهای ترموست (گرماسخت) اشاره کرد. ترموپلاستیک‌های مهندسی نظیر پلی‌آمید، پلی‌ایمید، پلی‌استرهای اشباع شده، پلی‌استال، پلی‌سولفون و یا پلیمرهای پرکاریرد نظیر پلی‌پروپیلن غالباً برای کاربردهای خودرویی چقرمه می‌شوند. حتی پلیمرهایی که در دمای محیط چقرمه به نظر می‌رسند ممکن است برای دوام بیشتر به اصلاح کننده‌های ضربه نیاز داشته باشند.

تنش مورد نیاز برای شروع یک ترک جدید، قابل مقایسه با تنشی که از بین مواد ادامه می‌یابد (تنش لازم برای رشد ترک) نیست. یک پلیمر ممکن است به راحتی شروع به ترک کند، اما به سختی آن را گسترش داده و یا این که به روشی دیگر آن را دور زند. بنابراین برای طبقه بندی پلیمرها براساس شروع ترک و همچنین رشد آن یادداشت کردن شرایطی که مواد به جای شکستن ترد رفتار تسلیم نشان می‌دهند می‌تواند مفید باشد. آزمایش نمونه‌هایی دارای شکاف ایجاد شده کوچک تیز انتشار ترک را برجسته می‌کند، در حالی که نمونه‌های بدون شکاف شروع و رشد ترک را مشخص می‌کند. پلیمرهای آمورف مانند پلی‌استایرن به طور معمول دارای مقاومت کم در برابر ضربه هستند (چه شکاف باشد چه نباشد)، به هنگام ضربه با ترک برداشتن می‌شکنند؛ زیرا هر دو تنش‌ مورد نیاز برای شروع و انتشار کم‌تر از تنش مورد نیاز برای تسلیم ماده است.

به دسته‌ بعدی از پلیمرها شبه چکش‌خوار گفته می‌شود، زیرا شروع ترک در آن‌ها دشوار بوده اما انتشار آن نیز آسان است. می‌توان آن‌ها را با توجه به استحکام بالای آن‌ها در نمونه‌های بدون شکاف و همچنین استحکام پایین در نمونه‌های دارای شکاف شناخت. آن‌ها دارای درجه حرارت انتقال مشخصه هستند که رفتارشان از شکننده به چکش خوار تغییر می‌کند (این انتقال همیشه با دمای انتقال شیشه‌ای مطابقت ندارد). پلی آمید و پلی اتیلن جز این دسته هستند. مشکلات مربوط به چقرمگی پلی آمید در دماهای پایین ظاهر می‌شود.

دسته‌ی بعدی نظیر پلی‌متیل‌متاکریلات، استال (پلی‌فرمالدهید) و پلی‌وینیل‌کلراید دارای تنش لازم برای شروع ترک و تنش تسلیم مشابه هستند و پیش‌بینی رفتار آن‌ها دشوارتر است. زیرا رفتار شکست می‌تواند چکش‌خوار یا شکننده باشد و به دما و سرعت کرنش بستگی دارد. اکثر پلیمرهای ترموست شکننده هستند، این موضوع غالباً با الیاف تقویت‌کننده پوشیده می‌شود، اما در صورت عدم موجود الیاف، شکنندگی آن‌ها آشکار می‌شود.

مکانیزم‌های چقرمگی

استراتژی معمول هنگام چقرمه‌سازی ترموپلاستیک‌ها، ایجاد ماده‌ای با دو فاز غیر قابل امتزاج با تفاوت قابل توجه در مدول است. فاز پراکنده شده اصلاح کننده ضربه بوده که عموماً الاستومر است. انتقال تنش باید به خوبی از فاز با مدول بالا به فاز با مدول پایین انجام شود. از ملاحظات کلیدی می‌توان به توزیع اندازه فاز پراکنده، خصوصیات مکانیکی و ماهیت فصل مشترک بین دو فاز اشاره کرد.

فاز پراکنده سبب جذب انرژی توسط یک یا چند روش زیر می‌شود:

  • ایجاد ترکچه‌ (تشکیل نواحی حاوی حفره‌های ریز که اغلب در داخل یک سری باند جمع می‌شوند، با چشم غیر مسلح یک سری خطوط موازی کم رنگ را ظاهر می‌کند) (Debonding)
  • تسلیم برشی، شکستگی ذرات الاستومری یا حفره‌زایی ( تشکیل حفره‌های کوچک در ذرات اصلاح کننده‌ی ضربه)

در صورت عدم استفاده از اصلاح کننده ضربه، این مکانیزم فقط در ناحیه نزدیک به نوک ترک در دسترس است و چنین منطقه کوچکی خیلی نمی‌تواند سبب اتلاف انرژی شود. برای جذب انرژی کافی، مکانیزم‌ها باید در بیشتر حجم پلیمر عمل کند. بنابراین ایجاد ترکچه یا تسلیم برشی باید ایجاد شود تا در بسیاری از موقعیت‌ها رخ دهد، نه فقط در ناحیه نزدیک به نوک ترک. به همین دلیل به یک اصلاح کننده ضربه احتیاج است.

تاکنون فرض بر این بوده است که اصلاح کننده ضربه، ذرات کوچک پراکنده شده را داخل فاز پیوسته پلیمر ایجاد می‌کند. این اتفاق با MBS، ABS و اصلاح کننده‌های ضربه آکریلیک می‌افتد. ممکن است یک شبکه ایجاد کند، همان طور که در پلی‌اتیلن کلرینه شده و EVA اتفاق می‌افتد.

ایجاد ترکچه

هنگامی که پلی‌استایرن یا پلی کربنات کشیده می‌شوند، گاهی اوقات خطوط ضعیف عمود بر نیروی اعمال شده قابل مشاهده هستند. در برخی موارد خصوصا پلی استایرن چقرمه شده حاوی اصلاح کننده ضربه ممکن است با سفید شدن همراه باشد. این خطوط تحت بزرگ نمایی بالا شامل نوارها یا مناطقی است که تعداد بسیار زیادی از حفره‌های بسیار کوچک را شامل می‌شوند. تا حدود ۵۰% از حجم تحت تاثیر را اشغال می‌کنند. حفره‌ها نور را پراکنده می‌کنند. مولکول‌های بلند پلیمری باندل‌های آرایش یافته یا فیبریل‌ها را در اطراف ناحیه ترکچه تشکیل می‌دهند و آن‌ها را با یکدیگر نگه می‌دارند. اگرچه در تنش‌های کششی بالا یک یا دو فیبریل ممکن است شکسته شود و ترک ایجاد شود. احتمالاً ترکچه کاملا به یک ترک تبدیل خواهد شد، اما انرژی صرف شکل گیری ترکچه شده است بنابراین استحکام ضربه بالا می‌رود. به این ترتیب برای ایجاد ترکچه، پلیمر باید بتواند به صورت فیبریل تشکیل شود و این به مولکول‌های بلند نیاز دارد. بنابراین پلیمرهایی با وزن مولکولی بسیار کم برای توسعه ترکچه مناسب نیستند. هر آرایش یافتگی قبلی مولکول‌های پلیمر تمایل به ایجاد ترکچه را تحت تأثیر قرار می‌دهد. زیرا جهت تنش اعمالی می‌تواند به موازات آرایش یافتگی غالب (جلوگیری از ایجاد ترکچه) و یا حالت نرمال آن باشد (مشوق ایجاد ترکچه). ایجاد ترکچه حجم تحت تأثیر را افزایش داده بدون آن‌که سطح مقطع خیلی تغییر کند. این حالت ایجاد ترکچه را از تسلیم برشی متمایز می‌کند؛ جایی که عکس این اتفاق می‌افتد.

تسلیم برشی

مشخصه تغییر شکل برشی این است که شکل نمونه به هنگام برش تغییر می‌کند، زمانی که یک جعبه‌ مقوایی مستطیلی کمی از شکل خارج شد اما حجم آن یکسان باقی می‌ماند. تغییر شکل با حرکت مولکول‌های پلیمر نسبت به یکدیگر حاصل می‌شود، به عنوان مثال لیز خوردن صفحه‌ای در فشار بالا.  این کار برای پلیمرهای آمورف نظیر پلی استایرن به دلیل عدم فشردگی منظم و نظم مولکولی ناشی از گره خوردگی و عدم وجود صفحات سر خورنده مناسب دشوار است. تسلیم برشی در پلیمرهای شیشه‌ای آمورف به وسعت کم رخ می‌دهد؛ اما در پلیمرهای نیمه بلورین و چکش‌خوار به راحتی اتفاق می‌افتد. در صورت عدم وجود اصلاح کننده‌ الاستومری، تغییر شکل برشی به مناطقی موضعی که تنش بسیار زیاد است محدود می‌شود (یا جایی که امکان لغزش از نظر ساختاری فراهم است). در این صورت انرژی زیادی اتلاف نمی‌شود. هنگام استفاده از اصلاح کننده‌ی ضربه، تسلیم بسیار گسترده‌تر شده و همراه با حفره‌های کوچک در ذرات الاستومری پراکنده شده است. این حفره‌زایی می‌تواند قبل و بعد از تسلیم پلیمر رخ دهد. تسلیم برشی همیشه یکنواخت نیست و گاهی اوقات به صورت ترجیحی در نواحی خاصی اتفاق می‌افتد.

ایجاد ترکچه همراه با تسلیم برشی

تسلیم برشی و ایجاد ترکچه می‌تواند با یکدیگر رخ دهد و هرکدام می‌توانند غالب باشد. این موضوع بستگی به نوع پلیمر دارد. ایجاد ترکچه در پلی استایرن چقرمه شده بیشتر از تسیلم برشی است، در حالی که هر دو مکانیزم در ABS برجسته است.

معیار سنجش چقرمگی

یکی از مهم‌ترین خواص کاربردی پلیمرها، مقاومت آن‌ها در مقابل ضربه می‌باشد.

روش‌های اندازه‌گیری میزان چقرمگی

برای اندازه‌گیری میزان چقرمگی از آزمون های ضربه استفاده می‌شود. برخی از متداول‌ترین این روش ها عبارتند از:

سقوط گوی: در این آزمون گلوله‌ای با وزن مشخص و از ارتفاع مشخص روی نمونه رها می‌شود. این روش بیش‌تر برای صفحات پلیمری کاربرد دارد.

Izod و Charpy: این دو آزمایش تقریباً شبیه هم انجام می شوند، با این تفاوت که طرز قرارگیری نمونه ها در دستگاه متفاوت است.

عوامل مؤثر بر میزان چقرمگی پلیمرها

میزان چقرمگی پلیمرها با خواص ضربه آن‌ها نسبت مستقیم دارد. علاوه بر عوامل مربوط به ذات ماده، عوامل فیزیکی زیر نیز می‌توانند بر میزان چقرمگی یک ماده پلیمری تأثیر بگذارند:

  • سرعت اعمال بار
  • حساسیت نسبت به شکاف
  • دما
  • جهت‌یافتگی
  • نوع و شرایط فرآیند
  • درصد بلورینگی
  • روش اعمال بار

انواع اصلاح کننده ضربه

الاستومرها غالباً مبتنی بر پلی‌دی‌ان‌ها یا کوپلیمرهای دی‌انی نظیر ۱،۳ بوتادین به کار می‌روند که اولین افزودنی‌های چقرمه کننده‌ موفقیت‌آمیز بودند. این افزودنی‌ها تا حدی مؤثر هستند؛ زیرا مدول آن‌ها ۱۰۰ تا ۵۰۰ برابر کم‌تر از ترمولاستیک مورد نظر است. متأسفانه پلی‌دی‌ان‌ها پیوند‌های شیمیایی دوگانه را معرفی می‌کند که به UV، حرارت و تخریب اکسیداسیونی حساس اند. هیدروژناسیون برخی از آن‌ها را از بین می‌برد. ترکیبات آکریلیک و کوپلیمرهای اتیلن اصلاح‌کننده‌های ضربه محبوب هستند و عموما باند دوگانه ایجاد نمی‌کنند. یک عیب دیگر در اصلاح‌کننده‌های ضربه اولیه وجود دارد. در کنار تخریب احتمالی، اصلاح کننده، فاز پراکنده‌ای حاوی قطرات زیاد با اندازه‌ی کوچک را به صورت یکنواخت فراهم می‌کند که این موضوع سبب کاهش مدول، دمای انتقال شیشه‌ای و دمای تغییر شکل حرارتی (HDT) می‌شود. این اثرات حد مقدار استفاده از اصلاح کننده را مشخص کرده که می‌تواند بدون آسیب به خواص دیگر استفاده شود. مقدار استفاده معمول بین ۳ تا ۱۵ درصد وزنی است اما گاهی به ۷۰ تا ۱۰۰ درصد در اطلاح کننده‌های EVA می‌رسد.

به اصطلاح اصلاح کننده‌های هسته-پوسته تأثیر کمتری بر مدول و HDT دارند. آن‌ها توسط پلیمریزاسیون امولسیونی ساخته می‌شوند و از دو قسمت تشکیل شده‌اند. همان طور که از اسم آن‌ها مشخص است، پوسته‌ی بیرونی آکریلیک سخت مانند PMMA است که در تماس مستقیم با پلیمری است که نیاز به چقرمه شدن دارد. این دو می‌بایست سازگار باشند (در مورد کوپلیمرهای SAN، سازگاری به قطبیت و مقدار نیتروژن کوپلیمر بستگی دارد). در داخل پوسته، هسته‌ پلیمری انعطاف پذیرتر و جذب کننده انرژی مانند پلی بوتادین دارای اتصلات عرضی، لاستیک طبیعی، کوپلیمر استایرن-بوتادین و بوتیل آکریل قرار دارد. از مخلوط شدن فاز الاستومری با فاز پیوسته جلوگیری می‌کند (پلیمر چقرمه می‌شود و مدول آن را کاهش می‌دهد). اندازه ذرات الاستومری بهینه برای چقرمه سازی وابسته به پلیمر است. در صورت گسترش ایجاد ترکچه، ABS به اندازه ذرات حدود ۵۰۰ نانومتر تا ۱ میکرون نیاز دارد، این در حالی است که HIPS به ۲ تا ۴ میکرون نیاز دارد و حتی می‌تواند از ذرات بزرگ تر نیز بهره‌مند شود. توزیع اندازه ذرات دو قله‌ای ممکن است در برخی موارد مفید باشد تا هم‌زمان دو ساز و کار جذب انرژی را تسهیل کند.

در صورت سازگار نبودن پلیمر و اصلاح کننده ضربه به یک سازگارکننده نیاز است. انتخاب آن به هر دو ماده اصلی تشکیل‌‌دهنده بستگی خواهد داشت. اتیلن-اکتان مالئیکه شده و SEBS مالئیکه شده اغلب مورد استفاده قرار می‌گیرد. زیرا به فعالیت اصلاح کننده ضربه کمک می‌کنند. هنگامی که پلی آمید ۶ با ABS مخلوط می‌شود سازگار کننده می‌تواند کوپلیمر استایرن مالئیک اندرید، پلی‌متیل‌متاکریلات با مالئیک اندرید و یا پلی‌متیل‌متاکریلات با گلایسیدیل متاکریلات باشد. گریدهای بسیار ریز از کلسیم‌کربنات یا سیلیکا تا حدی استحکام ضربه را بهبود می‌بخشد، برخلاف گریدهای درشت، سبب کاهش مقدار اصلاح کننده ضربه مورد نیاز می‌شود. بسیاری از اصلاح کننده‌ها به خصوص در پلی وینیل کلراید می‌توانند به عنوان روان کننده یا کمک فرآیند عمل کنند.

افزودنی‌های اصلاح کننده‌های ضربه ( این لیست جامع نیست)

  • پلیمرهای پلی‌دی‌انی نظیر استارین -بوتادین، ایزوپرن-استایرن گرافت یا بلاک کوپلیمرها
  • کوپلیمرهای استایرن- بوتادین کربوکسیله شده
  • کربوکسیله شده یا کوپلیمرهای بوتادین-آکریلونیتریل عامل دار شده
  • کوپلیمرهای رندوم اتیلن-پروپیلن
  • متاکریلات-بوتیل-آکریلات
  • متیل متاکریلات-بوتادین- استایرن (MBS)
  • ABS
  • EPDM
  • SEBS
  • اتیلن-اکتان و کوپلیمرهای اتیلن وینیل استات
  • کوپلیمرهای اکتیل آکریلات استایرن
  • پلی (بیوتیل اکریلات)
  • پلی یورتان‌های گرمانرم
  • پلی اتیلن کلرینه شده با ۳۰تا ۴۰ درصد کلر
  • الاستومرهای پلی اتیلنی (با استفاده از متالوسن‌ها) یا کوپلیمرهای اتیلن با بوتن یا اکتان
  • پلی سیلوکسان‌ها
  • پلی اتر ایمیدها

برخی از اصلاح کننده‌های بالا به ویژه MBS به یک آنتی اکسیدان نیاز دارند.

روش‌های اختلاط پلیمر با اصلاح کننده: الف) اختلاط مستقیم ب) اضافه کردن لاستیک به منومر و سپس پلیمریزاسیون منومر

مهم این است که در حین عملیات فرآیند از جدا شدن دو فاز جلوگیری کنید. این عمل توسط انتخاب اصلاح کننده با سازگاری مناسب با پلیمر، اضافه کردن سازگار کننده و یا اصلاح پلیمر با فرآیند پلیمریزاسیون گرافت انجام می‌شود. این دوجز سازنده نباید خیلی سازگار باشند زیرا باید دو فاز را در محصول نهایی تشکیل دهند.

 استفاده از پلیمرهای شکننده، مانند پلی­ وینیل ­کلراید (PVC) و پلی­ استایرن، تا قبل از تولید و توسعه­ پلیمرهای لاستیکی-چقرمه در سال­ های ۱۹۳۰ تا ۱۹۴۰، بسیار محدود بود. PVC به وسیله­ افزودن مقادیر کمی اکریلونیتریل رابر و دیگر مواد الاستومری چقرمه شد. هدف رایج استفاده از اصلاح­ کننده­ های ضربه، جذب انرژی ضربه به وسیله­ القای تغییر شکل پلاستیک قبل از ایجاد و رشد ترک است. ویژگی ­های عمومی چنین افزودنی­ هایی را می ­توان به صورت زیر خلاصه کرد:-Tg پایین-اثرگذاری در مقادیر کم-اندازه­ی ذره و توزیع اندازه­ ذره­ بهینه-چسبندگی خوب به ماتریس ترموپلاستیکی اساساً دو نوع ساختار در سیستم­ های پلیمری مقاوم به ضربه برای ساختارهای پلیمری سخت وجود دارد، که در ساختار و مکانیسم شکست با هم متفاوتند:-ذرات الاستومری کروی (ABS، MBS، اکریلیک ­ها)-فاز الاستومری پراکنده­ شبکه ­ای لانه زنبوری کوپلیمرهای گرافت شده­ بر پایه­ بوتا دی­ ان یکی از پرمصرف ­­­­­ترین خانواده­ های اصلاح ­کننده­ های ضربه را تشکیل می ­دهند. موفقیت آن­ ها در بازار عمدتاً به دلیل Tg پایینشان است (۸۰- درجه­ ساتنی­گراد). با این حال، حضور باندهای دوگانه در پلیمرهای دی­ انی می ­تواند باعث القای تخریب حرارتی و اکسیداسیونی در دماهای تولید و در مواجهه با اکسیژن و اشعه­ UV شود. بنابراین، این تأثیرات، باید با استفاده از آنتی­ اکسیدانت ­های مناسب به حداقل برسند. اصلاح ­کننده ­های ABS. Daly در سال ۱۹۵۲ ترکیبات اکریلونیتریل-بوتادی­ان-استایرن و اکریلونیتریل در حضور پلی­ بوتادی ­ان را تولید کرد و یک ترپلیمر گرافت شده را ایجاد کرد. هر کدام از اجزا به نحوی در اثرگذاری این ترکیب به عنوان اصلاح­ کننده­ ضربه مشارکت دارند: بوتادی­ ان فراهم کننده­ فاز نرم رابری است در حالی که استایرن و اکریلونیتریل قطبیت لازم برای سازگاری بین سطحی با پلیمری که این ماده در آن مورد استفاده قرار می ­گیرد را فراهم می­ آورند. هم­چنین، ویژگی­ های جانبی دیگری نیز وجود دارند که حائز اهمیت هستند: زنجیره­ بوتادی‌ان نسبت به تخریب در اثر UV حساس بوده و به محافظت نیاز دارد. در حالی که، اکریلونیتریل ایجاد مقاومت شیمیایی و سختی می­ کند. در این قاب، پلیمرهای ABS ترموپلاستیک ­های مهندسی هستند که فرآیندپذیری خوب، چقرمگی عالی، و پایداری حرارتی مطلوبی را از خود نشان می­ دهند و در بسیاری از بخش ­ها از جمله لوازم خانگی، ساختمان­ سازی و سازه­ ها، الکترونیک، خودرو و بسیاری موارد دیگر کاربرد یافته ­اند. اصلاح­ کننده ­های MBS. MBS (متاکریلات-بوتادی­ان-استایرن) مشابه نمونه ­های ABS هستند و به طور معمول، یا از طریق کوپلیمریزاسیون استایرن و متیل­ متاکریلات در حضور پلی­ بوتا­دی ­ان و یا با پلیمریزاسیون متیل­ متاکریلات در حضور لاستیک استایرن­ بوتا دی­ ان تولید می­ شوند. وجود بوتادی­ ان این ماده را مستعد تخریب با اشعه­ UV می ­کند و به همین علت، استفاده از آن محدود به کاربردهای داخلی می­ شود. عدم وجود اکریلونیتریل شفافیت محصولات را ارتقا داده اما باعث کاهش مقاومت شیمیایی می ­شود. اصلاح­ کننده­ های ضربه­ MBS چقرمگی لازم را برای پلیمرهایی از جمله  PVC فراهم می ­آ ورند تا مناسب کاربردهای بسته ­بندی در هر دو حالت شفاف و غیر شفاف (از جمله بطری­ های مقاوم به ضربه، ترانک ­های الکتریکی (trunking)، ورق­ ها و فیلم­ های بسته­ بندی، و …) شوند. اصلاح­ کننده ­های ضربه­ MBS اثر اصلاح­ کنندگی ضربه­ قابل توجه را در دماهای پایین نشان می­ دهند. با این حال، در بسیاری موارد، افزودن مقدار زیادی از اصلاح ­کننده­ MBS جهت تقویت استحکام ضربه مورد نیاز است.  اصلاح ­کننده­ های اکریلیک احتمالاً پرکاربردترین دسته­ اصلاح ­کننده­ های ضربه هستند چراکه بر مشکلات مرتبط با مقاومت در شرایط آب­ و هوایی که معمولا در مورد ABS و MBS مطرخ است، غلبه کرده ­اند. این دسته از اصلاح ­کننده ­ها معمولاً ترپلیمرهای متیل ­متاکریلات-بوتیل­اکریلات-استایرن یا متیل­ متاکریلات-اتیل­ هگزیل ­اکریلات-استایرن هستند. جدا از پایداری نوری بهبودیافته، این مواد هم­چنین مقاومت حرارتی خوب، پایداری گرمایی خوب و استحکام ضربه­ بالایی را ارائه می ­دهند. لیستی از اصلاح ­کننده ­های ضربه­ تجاری موجود در جدول زیر ارائه شده است. 

UN

 

همراهان عزیز می‌توانند جهت برقرای ارتباطات دوسویه، انتقال سوالات، نظرات و پیشنهادات سازنده خود از طریق پست الکترونیک زیر ما را یاری فرمایند.

info@fara-ps.com 📧